David E Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7514123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential metabolism of arsenicals regulates Fps1-mediated arsenite transport. Journal of Cell Biology, 2022, 221, .	5.2	2
2	Regulation of Pkc1 Hyper-Phosphorylation by Genotoxic Stress. Journal of Fungi (Basel, Switzerland), 2021, 7, 874.	3.5	4
3	Crosstalk between Saccharomyces cerevisiae SAPKs Hog1 and Mpk1 is mediated by glycerol accumulation. Fungal Biology, 2020, 124, 361-367.	2.5	9
4	Puupehenone, a Marine-Sponge-Derived Sesquiterpene Quinone, Potentiates the Antifungal Drug Caspofungin by Disrupting Hsp90 Activity and the Cell Wall Integrity Pathway. MSphere, 2020, 5, .	2.9	13
5	Methylated metabolite of arsenite blocks glycerol production in yeast by inhibition of glycerol-3-phosphate dehydrogenase. Molecular Biology of the Cell, 2019, 30, 2134-2140.	2.1	10
6	Stressing out or stressing in: intracellular pathways for SAPK activation. Current Genetics, 2019, 65, 417-421.	1.7	24
7	Intracellular mechanism by which genotoxic stress activates yeast SAPK Mpk1. Molecular Biology of the Cell, 2018, 29, 2898-2909.	2.1	19
8	Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Molecular Biology of the Cell, 2018, 29, 1904-1915.	2.1	28
9	Rgc2 Regulator of Glycerol Channel Fps1 Functions as a Homo- and Heterodimer with Rgc1. Eukaryotic Cell, 2015, 14, 719-725.	3.4	4
10	MAPK Hog1 closes the <i>S. cerevisiae</i> glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes and Development, 2013, 27, 2590-2601.	5.9	102
11	Mutants in the Candida glabrata Glycerol Channels Are Sensitized to Cell Wall Stress. Eukaryotic Cell, 2012, 11, 1512-1519.	3.4	11
12	Mpk1 MAPK Association with the Paf1 Complex Blocks Sen1-Mediated Premature Transcription Termination. Cell, 2011, 144, 745-756.	28.9	88
13	Regulation of Cell Wall Biogenesis in <i>Saccharomyces cerevisiae</i> : The Cell Wall Integrity Signaling Pathway. Genetics, 2011, 189, 1145-1175.	2.9	698
14	Yeast Fps1 glycerol facilitator functions as a homotetramer. Yeast, 2011, 28, 815-819.	1.7	18
15	Transcriptional reporters for genes activated by cell wall stress through a nonâ€catalytic mechanism involving Mpk1 and SBF. Yeast, 2010, 27, 541-548.	1.7	24
16	Yeast Mpk1 Cell Wall Integrity Mitogen-activated Protein Kinase Regulates Nucleocytoplasmic Shuttling of the Swi6 Transcriptional Regulator. Molecular Biology of the Cell, 2010, 21, 1609-1619.	2.1	47
17	Mechanism of Mpk1 Mitogen-Activated Protein Kinase Binding to the Swi4 Transcription Factor and Its Regulation by a Novel Caffeine-Induced Phosphorylation. Molecular and Cellular Biology, 2009, 29, 6449-6461.	2.3	47
18	Chapter 2 The Nâ€Acetylglucosamineâ€PI Transfer Reaction, the GlcNAcâ€PI Transferase Complex, and Its Regulation. The Enzymes, 2009, , 31-47.	1.7	1

DAVID E LEVIN

#	Article	IF	CITATIONS
19	Identification of Positive Regulators of the Yeast Fps1 Glycerol Channel. PLoS Genetics, 2009, 5, e1000738.	3.5	87
20	Yeast Mpk1 Mitogen-Activated Protein Kinase Activates Transcription through Swi4/Swi6 by a Noncatalytic Mechanism That Requires Upstream Signal. Molecular and Cellular Biology, 2008, 28, 2579-2589.	2.3	108
21	Dissecting the transcriptional activation function of the cell wall integrity MAP kinase. Yeast, 2007, 24, 335-342.	1.7	18
22	Gpi19, the Saccharomyces cerevisiae Homologue of Mammalian PIG-P, Is a Subunit of the Initial Enzyme for Glycosylphosphatidylinositol Anchor Biosynthesis. Eukaryotic Cell, 2005, 4, 1801-1807.	3.4	28
23	Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2005, 69, 262-291.	6.6	985
24	Mutational analysis of the cytoplasmic domain of the Wsc1 cell wall stress sensor. Microbiology (United Kingdom), 2004, 150, 3281-3288.	1.8	32
25	Yeast Ras Regulates the Complex that Catalyzes the First Step in GPI-Anchor Biosynthesis at the ER. Cell, 2004, 117, 637-648.	28.9	63
26	A Novel Ras Inhibitor, Eri1, Engages Yeast Ras at the Endoplasmic Reticulum. Molecular and Cellular Biology, 2003, 23, 4983-4990.	2.3	35
27	Yeast Rpi1 Is a Putative Transcriptional Regulator That Contributes to Preparation for Stationary Phase. Eukaryotic Cell, 2002, 1, 56-65.	3.4	21
28	HTL1 Encodes a Novel Factor That Interacts with the RSC Chromatin Remodeling Complex in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2002, 22, 8165-8174.	2.3	27
29	Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Molecular Microbiology, 2002, 46, 781-789.	2.5	209
30	Wsc1 and Mid2 Are Cell Surface Sensors for Cell Wall Integrity Signaling That Act through Rom2, a Guanine Nucleotide Exchange Factor for Rho1. Molecular and Cellular Biology, 2001, 21, 271-280.	2.3	288
31	Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Molecular Microbiology, 1999, 34, 1049-1057.	2.5	384
32	Mid2 Is a Putative Sensor for Cell Integrity Signaling in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 3969-3976.	2.3	191
33	Temperature-Induced Expression of Yeast <i>FKS2</i> Is under the Dual Control of Protein Kinase C and Calcineurin. Molecular and Cellular Biology, 1998, 18, 1013-1022.	2.3	198
34	A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO Journal, 1997, 16, 4924-4937.	7.8	220
35	Identification of Yeast Rho1p GTPase as a Regulatory Subunit of 1,3-β-Glucan Synthase. Science, 1996, 272, 279-281.	12.6	449
36	Activation of Yeast Protein Kinase C by Rho1 GTPase. Journal of Biological Chemistry, 1996, 271, 9193-9196.	3.4	275

David E Levin

#	Article	IF	CITATIONS
37	Dynamics and organization of MAP kinase signal pathways. Molecular Reproduction and Development, 1995, 42, 477-485.	2.0	133
38	A Second Osmosensing Signal Transduction Pathway in Yeast. Journal of Biological Chemistry, 1995, 270, 30157-30161.	3.4	250
39	The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response Genes and Development, 1995, 9, 1559-1571.	5.9	459
40	The proliferation of MAP kinase signaling pathways in yeast. Current Opinion in Cell Biology, 1995, 7, 197-202.	5.4	251
41	Bck1., 1995,, 293-294.		0
42	Mpk1., 1995,, 227-228.		0
43	ScPKC., 1995,, 93-94.		0
44	Evidence against the existence of the purported Saccharomyces cerevisiae PKC2 gene. Current Biology, 1994, 4, 990-995.	3.9	6
45	A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1993, 236-236, 443-447.	2.4	66
46	A conserved kinase cascade for MAP kinase activation in yeast. Current Opinion in Cell Biology, 1993, 5, 254-260.	5.4	268
47	Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect Journal of Cell Biology, 1992, 116, 1221-1229.	5.2	401
48	A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell, 1990, 62, 213-224.	28.9	443
49	Classifying mutagens as to their specificity in causing the six possible transitions and transversions: A simple analysis using the salmonella mutagenicity assay. Environmental Mutagenesis, 1986, 8, 9-28.	1.4	118
50	Target sequences for mutagenesis inSalmonella histidine-requiring mutants. Environmental Mutagenesis, 1986, 8, 631-641.	1.4	114
51	Naturally occurring carbonyl compounds are mutagens Salmonella tester strain TA104. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1985, 148, 25-34.	1.0	532
52	[29] Detection of oxidative mutagens with a new Salmonella tester strain (TA102). Methods in Enzymology, 1984, 105, 249-254.	1.0	44
53	Structural features of nitroaromatics that determine mutagenic activity in salmonella typhimurium. Environmental Mutagenesis, 1984, 6, 797-811.	1.4	92
54	Mutagenicity of quinones: pathways of metabolic activation and detoxification Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1696-1700.	7.1	357

David E Levin

#	Article	IF	CITATIONS
55	A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7445-7449.	7.1	729
56	Light-induced genetic toxicity of thimerosal and benzalkonium chloride in commercial contact lens solutions. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1982, 101, 11-18.	1.2	14
57	Light-enhanced genetic toxicity of crystal violet. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 103, 283-288.	1.1	15
58	A new Salmonella tester strain, TA97, for the detection of frameshift mutagens. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 94, 315-330.	1.0	179
59	Modefied fluctuation test for the direct detection of mutagens in foods with Salmonella typhimurium TA98. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1981, 85, 309-321.	0.4	11
60	Mutagenicity of fluorene derivatives: A proposed mechanism. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1979, 63, 1-10.	1.0	25