List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15394-15399.	7.1	279
2	Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO Journal, 2006, 25, 1375-1384.	7.8	241
3	A Novel Substrate-Based HIV-1 Protease Inhibitor Drug Resistance Mechanism. PLoS Medicine, 2007, 4, e36.	8.4	146
4	Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. Journal of Medicinal Chemistry, 2009, 52, 7132-7141.	6.4	132
5	Expression of glutamate carboxypeptidase II in human brain. Neuroscience, 2007, 144, 1361-1372.	2.3	116
6	A Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands. Journal of Physical Chemistry B, 2010, 114, 12666-12678.	2.6	116
7	Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. Journal of Neurochemistry, 2002, 80, 477-487.	3.9	113
8	Retroviral proteases and their roles in virion maturation. Virology, 2015, 479-480, 403-417.	2.4	109
9	Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing -hydrophobic-hydrophobic- or -aromatic-Pro- cleavage sites. Biochemistry, 1992, 31, 5193-5200.	2.5	107
10	Dual Substrate and Reaction Specificity in Mouse Serine Racemase:  Identification of High-Affinity Dicarboxylate Substrate and Inhibitors and Analysis of the β-Eliminase Activity. Biochemistry, 2005, 44, 13091-13100.	2.5	106
11	Current and Novel Inhibitors of HIV Protease. Viruses, 2009, 1, 1209-1239.	3.3	102
12	MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition. PLoS Biology, 2019, 17, e3000354.	5.6	94
13	Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Science, 2004, 13, 1627-1635.	7.6	93
14	Inorganic Polyhedral Metallacarborane Inhibitors of HIV Protease: A New Approach to Overcoming Antiviral Resistance. Journal of Medicinal Chemistry, 2008, 51, 4839-4843.	6.4	90
15	Structural Basis of Interactions between Human Glutamate Carboxypeptidase II and Its Substrate Analogs. Journal of Molecular Biology, 2008, 376, 1438-1450.	4.2	79
16	Mouse brain serine racemase catalyzes specific elimination ofL-serine to pyruvate. FEBS Letters, 2003, 535, 44-48.	2.8	78
17	Hydrolysis of synthetic chromogenic substrates by HIV-1 and HIV-2 proteinases. Biochemical and Biophysical Research Communications, 1990, 171, 439-444.	2.1	76
18	Molecular Analysis of the HIV-1 Resistance Development: Enzymatic Activities, Crystal Structures, and Thermodynamics of Nelfinavir-resistant HIV Protease Mutants. Journal of Molecular Biology, 2007, 374, 1005-1016.	4.2	74

#	Article	IF	CITATIONS
19	Structural Insight into the Pharmacophore Pocket of Human Glutamate Carboxypeptidase II. Journal of Medicinal Chemistry, 2007, 50, 3267-3273.	6.4	71
20	Random protein sequences can form defined secondary structures and are well-tolerated in vivo. Scientific Reports, 2017, 7, 15449.	3.3	68
21	A possible regulation of negative factor (Nef) activity of human immunodeficiency virus type 1 by the viral protease. FEBS Journal, 1994, 223, 589-593.	0.2	58
22	Reaction Mechanism of Glutamate Carboxypeptidase II Revealed by Mutagenesis, X-ray Crystallography, and Computational Methods. Biochemistry, 2009, 48, 4126-4138.	2.5	56
23	Urea and Guanidinium Induced Denaturation of a Trp-Cage Miniprotein. Journal of Physical Chemistry B, 2011, 115, 8910-8924.	2.6	56
24	Structure-Aided Design of Novel Inhibitors of HIV Protease Based on a Benzodiazepine Scaffold. Journal of Medicinal Chemistry, 2012, 55, 10130-10135.	6.4	53
25	Biochemical characterization of human glutamate carboxypeptidase III. Journal of Neurochemistry, 2006, 101, 682-696.	3.9	51
26	Sub-site preferences of the aspartic proteinase from the human immunodeficiency virus, HIV-1. FEBS Letters, 1990, 268, 35-38.	2.8	50
27	Expression and distribution of â€`high affinity' glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. Journal of Anatomy, 2008, 213, 539-546.	1.5	50
28	Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study. European Journal of Medicinal Chemistry, 2015, 89, 189-197.	5.5	49
29	A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 150-153.	0.7	48
30	Thermodynamic and structural analysis of <scp>HIV</scp> protease resistance to darunavir–Âanalysis of heavily mutated patientâ€derived <scp>HIV</scp> â€a proteases. FEBS Journal, 2014, 281, 1834-1847.	4.7	48
31	Unusual Binding Mode of an HIV-1 Protease Inhibitor Explains its Potency against Multi-drug-resistant Virus Strains. Journal of Molecular Biology, 2002, 324, 739-754.	4.2	46
32	Inhibition of Human Serine Racemase, an Emerging Target for Medicinal Chemistry. Current Drug Targets, 2011, 12, 1037-1055.	2.1	46
33	Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Scientific Reports, 2016, 6, 30443.	3.3	46
34	Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family. Scientific Reports, 2016, 6, 33671.	3.3	44
35	Molecular Characterization of Clinical Isolates of Human Immunodeficiency Virus Resistant to the Protease Inhibitor Darunavir. Journal of Virology, 2009, 83, 8810-8818.	3.4	43
36	Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs. Prostate, 2008, 68, 171-182.	2.3	42

#	Article	IF	CITATIONS
37	Proteolytic Processing of Particle-Associated Retroviral Polyproteins by Homologous and Heterologous Viral Proteinases. FEBS Journal, 1995, 228, 191-198.	0.2	42
38	Cell-Based Fluorescence Assay for Human Immunodeficiency Virus Type 1 Protease Activity. Antimicrobial Agents and Chemotherapy, 2001, 45, 2616-2622.	3.2	41
39	Mutations in HIV-1 <i>gag</i> and <i>pol</i> Compensate for the Loss of Viral Fitness Caused by a Highly Mutated Protease. Antimicrobial Agents and Chemotherapy, 2012, 56, 4320-4330.	3.2	40
40	Systematic mutational analysis of the activeâ€site threonine of HIVâ€1 proteinase: Rethinking the "fireman's grip―hypothesis. Protein Science, 2000, 9, 1631-1641.	7.6	39
41	Ninety-Nine Is Not Enough: Molecular Characterization of Inhibitor-Resistant Human Immunodeficiency Virus Type 1 Protease Mutants with Insertions in the Flap Region. Journal of Virology, 2008, 82, 5869-5878.	3.4	39
42	Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds. Journal of Medicinal Chemistry, 2016, 59, 545-558.	6.4	39
43	Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140409.	2.3	39
44	Recombinant human serine racemase: Enzymologic characterization and comparison with its mouse ortholog. Protein Expression and Purification, 2009, 63, 62-67.	1.3	38
45	Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorganic and Medicinal Chemistry, 2014, 22, 4099-4108.	3.0	37
46	Capillary electrophoresis method for determination ofD-serine and its application for monitoring of serine racemase activity. Electrophoresis, 2006, 27, 2558-2566.	2.4	36
47	lon specific effects of sodium and potassium on the catalytic activity of HIV-1 protease. Physical Chemistry Chemical Physics, 2009, 11, 7599.	2.8	36
48	Reduced-bond tight-binding inhibitors of HIV-1 protease Fine tuning of the enzyme subsite specificity. FEBS Letters, 1992, 298, 9-13.	2.8	35
49	Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS Journal, 2009, 276, 4448-4462.	4.7	33
50	Hydroxamic Acids As a Novel Family of Serine Racemase Inhibitors: Mechanistic Analysis Reveals Different Modes of Interaction with the Pyridoxal-5′-phosphate Cofactor. Journal of Medicinal Chemistry, 2009, 52, 6032-6041.	6.4	33
51	Specificity studies on retroviral proteinase from myeloblastosis-associated virus. Biochemistry, 1991, 30, 3437-3443.	2.5	32
52	iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties. Angewandte Chemie - International Edition, 2016, 55, 2356-2360.	13.8	31
53	The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. DNA Repair, 2019, 80, 45-51.	2.8	31
54	Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation. ACS Nano, 2016, 10, 8215-8222.	14.6	30

#	Article	IF	CITATIONS
55	Amino acids at the N- and C-termini of human glutamate carboxypeptidase II are required for enzymatic activity and proper folding. FEBS Journal, 2004, 271, 2782-2790.	0.2	29
56	Induced Maturation of Human Immunodeficiency Virus. Journal of Virology, 2014, 88, 13722-13731.	3.4	29
57	Design of Highly Potent Urea-Based, Exosite-Binding Inhibitors Selective for Glutamate Carboxypeptidase II. Journal of Medicinal Chemistry, 2015, 58, 4357-4363.	6.4	29
58	Proteinases of betaretroviruses bind single-stranded nucleic acids through a novel interaction module, the G-patch. FEBS Letters, 2004, 576, 271-276.	2.8	28
59	Kinetics of the dimerization of retroviral proteases: The "fireman's grip―and dimerization. Protein Science, 2009, 12, 2173-2182.	7.6	27
60	Configurations of Diastereomeric Hydroxyethylene Isosteres Strongly Affect Biological Activities of a Series of Specific Inhibitors of Human-Immunodeficiency-Virus Proteinase. FEBS Journal, 1997, 250, 559-566.	0.2	25
61	Mapping of the active site of glutamate carboxypeptidase II by siteâ€directed mutagenesis. FEBS Journal, 2007, 274, 4731-4741.	4.7	25
62	Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor. Nature Communications, 2015, 6, 6461.	12.8	25
63	Inhibitor–GCPII Interaction: Selective and Robust System for Targeting Cancer Cells with Structurally Diverse Nanoparticles. Molecular Pharmaceutics, 2018, 15, 2932-2945.	4.6	25
64	Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie, 2019, 166, 132-141.	2.6	25
65	Enzymatic and structural analysis of the 147A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Science, 2008, 17, 1555-1564.	7.6	24
66	HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat. Retrovirology, 2011, 8, 70.	2.0	23
67	Determining and Overcoming Resistance to HIV Protease Inhibitors. Current Drug Targets Infectious Disorders, 2004, 4, 137-152.	2.1	23
68	A Phenylnorstatine Inhibitor Binding to HIV-1 Protease:Â Geometry, Protonation, and Subsiteâ^'Pocket Interactions Analyzed at Atomic Resolution. Journal of Medicinal Chemistry, 2004, 47, 2030-2036.	6.4	22
69	Structural and biochemical characterization of the folylâ€polyâ€Î³â€ <scp>l</scp> â€glutamate hydrolyzing activity of human glutamate carboxypeptidase <scp>ll</scp> . FEBS Journal, 2014, 281, 3228-3242.	4.7	22
70	High-level expression of enzymatically active bovine leukemia virus proteinase inE. coli. FEBS Letters, 1991, 287, 129-132.	2.8	21
71	Comparison of human glutamate carboxypeptidases <scp>II</scp> and <scp>III</scp> reveals their divergent substrate specificities. FEBS Journal, 2016, 283, 2528-2545.	4.7	21
72	Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. Journal of Medicinal Chemistry, 2017, 60, 8385-8393.	6.4	21

#	Article	IF	CITATIONS
73	Capturing a dynamically interacting inhibitor by paramagnetic NMR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 5661-5673.	2.8	21
74	Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors. European Journal of Medicinal Chemistry, 2020, 208, 112754.	5.5	21
75	Novel Substrate-Based Inhibitors of Human Glutamate Carboxypeptidase II with Enhanced Lipophilicity. Journal of Medicinal Chemistry, 2011, 54, 7535-7546.	6.4	20
76	Prostateâ€specific membrane antigen and its truncated form PSM′. Prostate, 2009, 69, 471-479.	2.3	19
77	Potency Comparison of Peptidomimetic Inhibitors against HIV-1 and HIV-2 Proteinases: Design of Equipotent Lead Compounds. Archives of Biochemistry and Biophysics, 1997, 341, 62-69.	3.0	18
78	A Picomolar Inhibitor of Resistant Strains of Human Immunodeficiency Virus Protease Identified by a Combinatorial Approach. Archives of Biochemistry and Biophysics, 2000, 382, 22-30.	3.0	18
79	Hydroxyethylamine Isostere of an HIV-1 Protease Inhibitor Prefers Its Amine to the Hydroxy Group in Binding to Catalytic Aspartates. A Synchrotron Study of HIV-1 Protease in Complex with a Peptidomimetic Inhibitor. Journal of Medicinal Chemistry, 2002, 45, 1432-1438.	6.4	18
80	Inhibitor binding at the protein interface in crystals of a HIV-1 protease complex. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1943-1948.	2.5	18
81	Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Analytica Chimica Acta, 2018, 997, 44-51.	5.4	18
82	HIV-1 Protease Mutations and Inhibitor Modifications Monitored on a Series of Complexes. Structural Basis for the Effect of the A71V Mutation on the Active Site. Journal of Medicinal Chemistry, 2006, 49, 5777-5784.	6.4	17
83	Kinetic, Thermodynamic, and Structural Analysis of Drug Resistance Mutations in Neuraminidase from the 2009 Pandemic Influenza Virus. Viruses, 2018, 10, 339.	3.3	17
84	A Modular Approach to HIV-1 Proteinase Inhibitor Design. Biochemical and Biophysical Research Communications, 1996, 222, 38-43.	2.1	16
85	Homology modeling and SAR analysis of Schistosoma japonicum cathepsin D (SjCD) with statin inhibitors identify a unique active site steric barrier with potential for the design of specific inhibitors. Biological Chemistry, 2005, 386, 339-349.	2.5	16
86	Mouse glutamate carboxypeptidaseÂ <scp>II</scp> (<scp>GCPII</scp>) has a similar enzyme activity and inhibition profile but a different tissue distribution to human <scp>GCPII</scp> . FEBS Open Bio, 2017, 7, 1362-1378.	2.3	15
87	Investigation of flexibility of neuraminidase 150-loop using tamiflu derivatives in influenza A viruses H1N1 and H5N1. Bioorganic and Medicinal Chemistry, 2019, 27, 2935-2947.	3.0	15
88	Detection and quantitation of glutamate carboxypeptidase II in human blood. Prostate, 2014, 74, 768-780.	2.3	14
89	Structural and Biochemical Characterization of a Novel Aminopeptidase from Human Intestine. Journal of Biological Chemistry, 2015, 290, 11321-11336.	3.4	14
90	Re-emerging Aspartic Protease Targets: Examining <i>Cryptococcus neoformans</i> Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery. Journal of Medicinal Chemistry, 2021, 64, 6706-6719.	6.4	14

#	Article	IF	CITATIONS
91	Subsite specificity of the proteinase from myeloblastosis associated virus. FEBS Letters, 1991, 282, 73-76.	2.8	13
92	Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. Journal of Clinical Virology, 2006, 36, 50-59.	3.1	12
93	Medicinal Application ofÂCarboranes. , 2011, , 41-70.		12
94	Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Scientific Reports, 2018, 8, 10438.	3.3	12
95	The Murine Endogenous Retrovirus MIA14 Encodes an Active Aspartic Proteinase That Is Functionally Similar to Proteinases from D-Type Retroviruses. Archives of Biochemistry and Biophysics, 2002, 398, 261-268.	3.0	11
96	An Ethylenamine Inhibitor Binds Tightly to Both Wild Type and Mutant HIV-1 Proteases. Structure and Energy Study. Journal of Medicinal Chemistry, 2003, 46, 1636-1644.	6.4	11
97	DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening. Nucleic Acids Research, 2017, 45, e10-e10.	14.5	11
98	Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease. Faraday Discussions, 2013, 160, 359-370.	3.2	10
99	Inhibitor–Polymer Conjugates as a Versatile Tool for Detection and Visualization of Cancer-Associated Carbonic Anhydrase Isoforms. ACS Omega, 2019, 4, 6746-6756.	3.5	10
100	GS-8374, a Prototype Phosphonate-Containing Inhibitor of HIV-1 Protease, Effectively Inhibits Protease Mutants with Amino Acid Insertions. Journal of Virology, 2014, 88, 3586-3590.	3.4	9
101	Kinetic, thermodynamic and structural analysis of tamiphosphor binding to neuraminidase of H1N1 (2009) pandemic influenza. European Journal of Medicinal Chemistry, 2016, 121, 100-109.	5.5	9
102	Identification of Protein Targets of Bioactive Small Molecules Using Randomly Photomodified Probes. ACS Chemical Biology, 2018, 13, 3333-3342.	3.4	9
103	Predicting Effects of Site-Directed Mutagenesis on Enzyme Kinetics by QM/MM and QM Calculations: A Case of Glutamate Carboxypeptidase II. Journal of Physical Chemistry B, 2022, 126, 132-143.	2.6	9
104	A distinct binding mode of a hydroxyethylamine isostere inhibitor of HIV-1 protease. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 472-476.	2.5	8
105	Role of hydroxyl group and R/S configuration of isostere in binding properties of HIV-1 protease inhibitors. FEBS Journal, 2004, 271, 4451-4461.	0.2	8
106	Derivatization chemistry of the double-decker dicobalt sandwich ion targeted to design biologically active substances. Pure and Applied Chemistry, 2012, 84, 2243-2262.	1.9	8
107	Structural and Thermodynamic Analysis of the Resistance Development to Pimodivir (VX-787), the Clinical Inhibitor of Cap Binding to PB2 Subunit of Influenza A Polymerase. Molecules, 2021, 26, 1007.	3.8	8
108	GCPII and its close homolog GCPIII from a neuropeptidase to a cancer marker and beyond. Frontiers in Bioscience - Landmark, 2019, 24, 648-687.	3.0	8

#	Article	IF	CITATIONS
109	Potent inhibition of drug-resistant HIV protease variants by monoclonal antibodies. Antiviral Research, 2008, 78, 275-277.	4.1	7
110	Synthesis and In Vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors. International Journal of Molecular Sciences, 2021, 22, 7735.	4.1	7
111	Characterisation of Mutated Proteinases Derived from HIV-Positive Patients: Enzyme Activity, Vitality and Inhibition. Collection of Czechoslovak Chemical Communications, 2004, 69, 703-714.	1.0	6
112	Response of HIV positive patients to the long-term salvage therapy by lopinavir/ritonavir. Journal of Clinical Virology, 2005, 33, 319-323.	3.1	6
113	Inhibitor and Substrate Binding Induced Stability of HIV-1 Protease against Sequential Dissociation and Unfolding Revealed by High Pressure Spectroscopy and Kinetics. PLoS ONE, 2015, 10, e0119099.	2.5	6
114	A Modular Synthesis of <i>N</i> â€Benzotriazole Ureas Using Alkylation of 5â€Nitrobenzotriazole. ChemistrySelect, 2016, 1, 101-107.	1.5	6
115	Tris-(Nitrilotriacetic Acid)-Decorated Polymer Conjugates as Tools for Immobilization and Visualization of His-Tagged Proteins. Catalysts, 2019, 9, 1011.	3.5	6
116	Structure-activity relationship and biochemical evaluation of novel fibroblast activation protein and prolyl endopeptidase inhibitors with α-ketoamide warheads. European Journal of Medicinal Chemistry, 2021, 224, 113717.	5.5	6
117	DNA-linked inhibitor antibody assay (DIANA) as a new method for screening influenza neuraminidase inhibitors. Biochemical Journal, 2018, 475, 3847-3860.	3.7	5
118	The calciumâ€binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity. Protein Science, 2018, 27, 1575-1584.	7.6	5
119	structural characterization of the interaction between the C-terminal domain of the influenza polymerase PA subunit and an optimized small peptide inhibitor. Antiviral Research, 2021, 185, 104971.	4.1	5
120	Glutamate carboxypeptidase II does not process amyloidâ $\in \hat{\mathbf{i}}^2$ peptide. FASEB Journal, 2013, 27, 2626-2632.	0.5	4
121	Synthesis and evaluation of 2-pyridinylpyrimidines as inhibitors of HIV-1 structural protein assembly. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3487-3490.	2.2	4
122	Anomalous adsorptive properties of HIV protease: Indication of two-dimensional crystallization?. Colloids and Surfaces B: Biointerfaces, 2008, 64, 145-149.	5.0	3
123	A novel PSMA/GCPIIâ€deficient mouse model shows enlarged seminal vesicles upon aging. Prostate, 2019, 79, 126-139.	2.3	3
124	The role of the biotin linker in polymer antibody mimetics, iBodies, in biochemical assays. Polymer Chemistry, 2021, 12, 6009-6021.	3.9	3
125	Random mutagenesis of human serine racemase reveals residues important for the enzymatic activity. Collection of Czechoslovak Chemical Communications, 2010, 75, 59-79.	1.0	3
126	Unorthodox Inhibitors of HIV Protease: Looking Beyond Active-site-directed Peptidomimetics. Current Pharmaceutical Design, 2014, 20, 3389-3397.	1.9	3

#	Article	IF	CITATIONS
127	Czech bibliometric system fosters mediocre research. Nature, 2009, 460, 1079-1079.	27.8	2
128	Identification of Novel Carbonic Anhydrase IX Inhibitors Using High-Throughput Screening of Pooled Compound Libraries by DNA-Linked Inhibitor Antibody Assay (DIANA). SLAS Discovery, 2020, 25, 1026-1037.	2.7	2
129	Chapter 3. Glutamate Carboxypeptidase II as a Therapeutic Target. RSC Drug Discovery Series, 2011, , 62-95.	0.3	2
130	The development of a high-affinity conformation-sensitive antibody mimetic using a biocompatible copolymer carrier (iBody). Journal of Biological Chemistry, 2021, 297, 101342.	3.4	2
131	Proteolytic Processing of Particle-Associated Retroviral Polyproteins by Homologous and Heterologous Viral Proteinases. FEBS Journal, 1995, 228, 191-198.	0.2	1
132	On the role of theRconfiguration of the reaction-intermediate isostere in HIV-1 protease-inhibitor binding: X-ray structure at 2.0â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 489-497.	2.5	1
133	Analysis of substrate specificity of HIV protease species. , 2002, , 474-475.		1
134	Synthesis of library of HIV proteases inhibitors. , 1999, , .		1
135	Simian Immunodeficiency Virus Retropepsin. , 2013, , 204-207.		0
136	Miscellaneous Viral Retropepsins. , 2013, , 237-240.		0
137	Spumapepsins. , 2013, , 245-248.		0
138	iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties. Angewandte Chemie, 2016, 128, 2402-2406.	2.0	0
139	Enyzmes HIV Protease. , 2021, , 264-269.		0
140	Spumapepsins. , 2004, , 188-190.		0
141	Miscellaneous viral retropepsins. , 2004, , 185-187.		0
142	Simian immunodeficiency virus retropepsin. , 2004, , 158-160.		0
143	Short, tight-binding inhibitors of HIV-1 protease with dipeptide isosteres at the P1-P1′ site. , 1993, , 803-804.		0