
Viktor Hlavac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513514/publications.pdf Version: 2024-02-01

VINTOR HLAVAC

#	Article	IF	CITATIONS
1	Germline and somatic genetic variability of oxysterol-related genes in breast cancer patients with early disease of the luminal subtype. Biochimie, 2022, 199, 158-169.	2.6	3
2	Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. Journal of Medical Genetics, 2021, 58, 369-377.	3.2	31
3	SLC46A1 Haplotype with Predicted Functional Impact has Prognostic Value in Breast Carcinoma. Molecular Diagnosis and Therapy, 2021, 25, 99-110.	3.8	2
4	Genomeâ€wide scan of long noncoding <scp>RNA</scp> single nucleotide polymorphism <scp>s</scp> and pancreatic cancer susceptibility. International Journal of Cancer, 2021, 148, 2779-2788.	5.1	23
5	Role of Genetic Variation in Cytochromes P450 in Breast Cancer Prognosis and Therapy Response. International Journal of Molecular Sciences, 2021, 22, 2826.	4.1	5
6	Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis, 2021, 42, 1037-1045.	2.8	14
7	Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Frontiers in Genetics, 2021, 12, 693933.	2.3	10
8	Genetic Polymorphisms Involved in Mitochondrial Metabolism and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2342-2345.	2.5	4
9	Identification of Recessively Inherited Genetic Variants Potentially Linked to Pancreatic Cancer Risk. Frontiers in Oncology, 2021, 11, 771312.	2.8	8
10	5′ Untranslated Region Elements Show High Abundance and Great Variability in Homologous ABCA Subfamily Genes. International Journal of Molecular Sciences, 2020, 21, 8878.	4.1	4
11	Targeted Sequencing of Pancreatic Adenocarcinomas from Patients with Metachronous Pulmonary Metastases. Genes, 2020, 11, 1391.	2.4	1
12	Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450. Journal of Personalized Medicine, 2020, 10, 108.	2.5	11
13	Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response. International Journal of Molecular Sciences, 2020, 21, 9556.	4.1	14
14	Genetic analysis of subsequent second primary malignant neoplasms in long-term pancreatic cancer survivors suggests new potential hereditary genetic alterations. Cancer Management and Research, 2019, Volume 11, 599-609.	1.9	4
15	Gene-based evidence for burden of rare pathogenic variants in pharmacogenes and oncogens of Czech breast cancer patients. , 2019, , .		0
16	Use of Cermline Genetic Variability for Prediction of Chemoresistance and Prognosis of Breast Cancer Patients. Cancers, 2018, 10, 511.	3.7	14
17	ABC Transporters and Their Role in the Neoadjuvant Treatment of Esophageal Cancer. International Journal of Molecular Sciences, 2018, 19, 868.	4.1	21
18	Transcript expression and genetic variability analysis of caspases in breast carcinomas suggests CASP9 as the most interesting target. Clinical Chemistry and Laboratory Medicine, 2017, 55, 111-122.	2.3	0

VIKTOR HLAVAC

#	Article	IF	CITATIONS
19	Dysregulation of KRAS signaling in pancreatic cancer is not associated with KRAS mutations and outcome. Oncology Letters, 2017, 14, 5980-5988.	1.8	9
20	Downregulation of ABC Transporters in Non-neoplastic Tissues Confers Better Prognosis for Pancreatic and Colorectal Cancer Patients. Journal of Cancer, 2017, 8, 1959-1971.	2.5	20
21	Genetic and functional analyses do not explain the association of high PRC1 expression with poor survival of breast carcinoma patients. Biomedicine and Pharmacotherapy, 2016, 83, 857-864.	5.6	18
22	Role of family D ATP-binding cassette transporters (ABCD) in cancer. Biochemical Society Transactions, 2015, 43, 937-942.	3.4	24
23	Non-Coding Polymorphisms in Nucleotide Binding Domain 1 in ABCC1 Gene Associate with Transcript Level and Survival of Patients with Breast Cancer. PLoS ONE, 2014, 9, e101740.	2.5	14
24	The Role of Cytochromes P450 and Aldo-Keto Reductases in Prognosis of Breast Carcinoma Patients. Medicine (United States), 2014, 93, e255.	1.0	22
25	The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics, 2013, 14, 515-529.	1.3	127
26	The association between the expression of solute carrier transporters and the prognosis of pancreatic cancer. Cancer Chemotherapy and Pharmacology, 2013, 72, 669-682.	2.3	60
27	Importance of transcript levels of caspase-2 isoforms S and L for breast carcinoma progression. Future Oncology, 2013, 9, 427-438.	2.4	14