Felix Randow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513266/publications.pdf

Version: 2024-02-01

42 papers

14,693 citations

32 h-index 254184 43 g-index

45 all docs

45 docs citations

45 times ranked

26240 citing authors

#	Article	IF	CITATIONS
1	The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nature Immunology, 2021, 22, 140-153.	14.5	104
2	SIK2 orchestrates actin-dependent host response upon Salmonella infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2024144118.	7.1	10
3	Sensing of mycobacterial arabinogalactan by galectinâ€9 exacerbates mycobacterial infection. EMBO Reports, 2021, 22, e51678.	4.5	14
4	Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature, 2021, 594, 111-116.	27.8	185
5	Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. Journal of Virology, 2021, 95, e0066321.	3.4	42
6	Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles. Current Biology, 2020, 30, 2974-2983.e6.	3.9	33
7	Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nature Immunology, 2020, 21, 880-891.	14.5	182
8	CALCOCO2/NDP52 initiates selective autophagy through recruitment of ULK and TBK1 kinase complexes. Autophagy, 2019, 15, 1655-1656.	9.1	12
9	The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria. Molecular Cell, 2019, 74, 320-329.e6.	9.7	220
10	Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy. Molecular Cell, 2019, 74, 347-362.e6.	9.7	314
11	Measuring Antibacterial Autophagy. Methods in Molecular Biology, 2019, 1880, 679-690.	0.9	4
12	Galectin-8–mediated selective autophagy protects against seeded tau aggregation. Journal of Biological Chemistry, 2018, 293, 2438-2451.	3.4	84
13	Strange New World: Bacteria Catalyze Ubiquitylation via ADP Ribosylation. Cell Host and Microbe, 2017, 21, 127-129.	11.0	6
14	LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF- $\hat{\mathbb{I}}^{\circ}$ B. Nature Microbiology, 2017, 2, 17063.	13.3	182
15	GBPs Inhibit Motility of Shigella flexneri but Are Targeted for Degradation by the Bacterial Ubiquitin Ligase IpaH9.8. Cell Host and Microbe, 2017, 22, 507-518.e5.	11.0	143
16	Recruitment of <scp>TBK</scp> 1 to cytosolâ€invading <i>Salmonella</i> induces <scp>WIPI</scp> 2â€dependent antibacterial autophagy. EMBO Journal, 2016, 35, 1779-1792.	7.8	107
17	TBK1 directs WIPI2 against Salmonella. Autophagy, 2016, 12, 2508-2509.	9.1	2
18	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	Citations
19	Rubicon swaps autophagy for LAP. Nature Cell Biology, 2015, 17, 843-845.	10.3	34
20	A LC3-Interacting Motif in the Influenza A Virus M2 Protein Is Required to Subvert Autophagy and Maintain Virion Stability. Cell Host and Microbe, 2014, 15, 239-247.	11.0	207
21	Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. Journal of Cell Biology, 2014, 205, 847-862.	5.2	73
22	Self and Nonself: How Autophagy Targets Mitochondria and Bacteria. Cell Host and Microbe, 2014, 15, 403-411.	11.0	259
23	Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens. Science, 2013, 340, 701-706.	12.6	231
24	The role of â€~eat-me' signals and autophagy cargo receptors in innate immunity. Current Opinion in Microbiology, 2013, 16, 339-348.	5.1	179
25	Sterical Hindrance Promotes Selectivity of the Autophagy Cargo Receptor NDP52 for the Danger Receptor Galectin-8 in Antibacterial Autophagy. Science Signaling, 2013, 6, ra9.	3.6	70
26	An essential role for the ATG8 ortholog LC3C in antibacterial autophagy. Autophagy, 2013, 9, 784-786.	9.1	25
27	Autophagy in the regulation of pathogen replication and adaptive immunity. Trends in Immunology, 2012, 33, 475-487.	6.8	101
28	LC3C, Bound Selectively by a Noncanonical LIR Motif in NDP52, Is Required for Antibacterial Autophagy. Molecular Cell, 2012, 48, 329-342.	9.7	285
29	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
30	Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature, 2012, 482, 414-418.	27.8	864
31	How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial invasion. Autophagy, 2011, 7, 304-309.	9.1	58
32	NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria. Autophagy, 2010, 6, 288-289.	9.1	92
33	Endoplasmic reticulum chaperone gp96 is essential for infection with vesicular stomatitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6970-6975.	7.1	44
34	Viral avoidance and exploitation of the ubiquitin system. Nature Cell Biology, 2009, 11, 527-534.	10.3	204
35	The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunology, 2009, 10, 1215-1221.	14.5	766
36	Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation. Cell, 2009, 136, 1098-1109.	28.9	667

#	Article	IF	CITATIONS
37	Signal processing by its coil zipper domain activates IKKγ. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1279-1284.	7.1	55
38	Somatic Cell Genetics for the Study of NF-κB Signaling in Innate ImmunityA presentation from the EMBO Meeting "Cellular Signaling & Molecular Medicine,―Cavtat, Croatia, 29 March to 6 April 2008 Science Signaling, 2008, 1, pt7.	3.6	5
39	SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO Journal, 2007, 26, 3180-3190.	7.8	170
40	Retroviral transduction of DT40. Sub-Cellular Biochemistry, 2006, 40, 383-386.	2.4	32
41	The role of PPAR-Î ³ in macrophage differentiation and cholesterol uptake. Nature Medicine, 2001, 7, 41-47.	30.7	476
42	Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nature Cell Biology, 2001, 3, 891-896.	10.3	326