Juping Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7513035/publications.pdf

Version: 2024-02-01

		147801	149698
65	3,316	31	56
papers	citations	h-index	g-index
66	66	66	4444
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Human placental mesenchymal stromal cells are ciliated and their ciliation is compromised in preeclampsia. BMC Medicine, 2022, 20, 35.	5.5	7
2	<i>BCL6</i> , a key oncogene, in the placenta, pre-eclampsia and endometriosis. Human Reproduction Update, 2022, 28, 890-909.	10.8	8
3	Functional Analysis of p21Cip1/CDKN1A and Its Family Members in Trophoblastic Cells of the Placenta and Its Roles in Preeclampsia. Cells, 2021, 10, 2214.	4.1	6
4	Mitotic Centromere-Associated Kinesin (MCAK/KIF2C) Regulates Cell Migration and Invasion by Modulating Microtubule Dynamics and Focal Adhesion Turnover. Cancers, 2021, 13, 5673.	3.7	20
5	Primary Cilia in Trophoblastic Cells. Hypertension, 2020, 76, 1491-1505.	2.7	24
6	The Function of Oncogene B-Cell Lymphoma 6 in the Regulation of the Migration and Invasion of Trophoblastic Cells. International Journal of Molecular Sciences, 2020, 21, 8393.	4.1	6
7	A Message from the Human Placenta: Structural and Immunomodulatory Defense against SARS-CoV-2. Cells, 2020, 9, 1777.	4.1	56
8	Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics. International Journal of Molecular Sciences, 2020, 21, 5793.	4.1	101
9	Restoration of primary cilia in obese adipose-derived mesenchymal stem cells by inhibiting Aurora A or extracellular signal-regulated kinase. Stem Cell Research and Therapy, 2019, 10, 255.	5.5	24
10	Function of p21 (Cip1/Waf1/CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells. Cancers, 2019, 11, 989.	3.7	23
11	RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Molecular Oncology, 2019, 13, 2121-2141.	4.6	12
12	Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity. Cells, 2019, 8, 1288.	4.1	36
13	The Multifaceted p21 (Cip1/Waf1/CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers, 2019, 11, 1220.	3.7	166
14	Potential involvement of RITA in the activation of Aurora A at spindle poles during mitosis. Oncogene, 2019, 38, 4199-4214.	5.9	3
15	RITA Is Expressed in Trophoblastic Cells and Is Involved in Differentiation Processes of the Placenta. Cells, 2019, 8, 1484.	4.1	3
16	Insight into the development of obesity: functional alterations of adiposeâ€derived mesenchymal stem cells. Obesity Reviews, 2018, 19, 888-904.	6.5	103
17	Primary Cilia Are Dysfunctional in Obese Adipose-Derived Mesenchymal Stem Cells. Stem Cell Reports, 2018, 10, 583-599.	4.8	48
18	Prognostic impact of RITA expression in patients with anal squamous cell carcinoma treated with chemoradiotherapy. Radiotherapy and Oncology, 2018, 126, 214-221.	0.6	7

#	Article	IF	Citations
19	Deficient primary cilia in obese adiposeâ€derived mesenchymal stem cells: obesity, a secondary ciliopathy?. Obesity Reviews, 2018, 19, 1317-1328.	6.5	24
20	The role of p21Cip1/CDKN1A in trophoblastic cells and preeclampsia. , 2018, 78, .		0
21	Functional analysis of RITA in trophoblastic cell fusion and preeclampsia. , 2018, 78, .		O
22	Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics. Oncogene, 2017, 36, 2146-2159.	5.9	25
23	Involvement of the oncogene B-cell lymphoma 6 in the fusion and differentiation process of trophoblastic cells of the placenta. Oncotarget, 2017, 8, 108643-108654.	1.8	8
24	B-cell lymphoma 6 promotes proliferation and survival of trophoblastic cells. Cell Cycle, 2016, 15, 827-839.	2.6	36
25	Molecular insight into the regulation and function of MCAK. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 228-245.	5.2	36
26	Mitotic p21Cip1/CDKN1A is regulated by cyclin-dependent kinase 1 phosphorylation. Oncotarget, 2016, 7, 50215-50228.	1.8	32
27	Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells. Oncotarget, 2016, 7, 84271-84285.	1.8	14
28	Clinical Study: Change in Outlook Towards Birth After a Midwife Led Antenatal Education Programme Versus Hypnoreflexogenous Self-Hypnosis Training for Childbirth. Geburtshilfe Und Frauenheilkunde, 2015, 75, 1161-1166.	1.8	5
29	Germ Cell Tumors Overexpress the Candidate Therapeutic target Cyclin B1 Independently of p53 function. International Journal of Biological Markers, 2015, 30, 275-281.	1.8	3
30	Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells. Cell Cycle, 2015, 14, 3755-3767.	2.6	29
31	Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene, 2015, 34, 1758-1767.	5.9	90
32	The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget, 2015, 6, 6641-6655.	1.8	20
33	Loss of p21Cip1/CDKN1A renders cancer cells susceptible to Polo-like kinase 1 inhibition. Oncotarget, 2015, 6, 6611-6626.	1.8	27
34	Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget, 2015, 6, 34475-34493.	1.8	65
35	Prostaglandin E2 Labour Induction with Intravaginal (Minprostin) versus Intracervical (Prepidil) Administration at Term: Randomized Study of Maternal and Neonatal Outcome and Patientâ∈™s Perception Using the Osgood Semantic Differential Scales. BioMed Research International, 2014, 2014, 1-6.	1.9	7
36	Targeted gene analysis: increased B-cell lymphoma 6 in preeclamptic placentas. Human Pathology, 2014, 45, 1234-1242.	2.0	29

#	Article	IF	CITATIONS
37	p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene, 2014, 33, 5716-5728.	5.9	42
38	Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget, 2014, 5, 3130-3144.	1.8	31
39	Polo-like kinase 1 inhibitors, mitotic stress and the tumor suppressor p53. Cell Cycle, 2013, 12, 1340-1351.	2.6	29
40	Function of Survivin in Trophoblastic Cells of the Placenta. PLoS ONE, 2013, 8, e73337.	2.5	32
41	Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget, 2013, 4, 958-971.	1.8	32
42	Âp53 is not directly relevant to the response of Polo-like kinase 1 inhibitors. Cell Cycle, 2012, 11, 543-553.	2.6	33
43	A lesson for cancer research: placental microarray gene analysis in preeclampsia. Oncotarget, 2012, 3, 759-773.	1.8	92
44	Polo-Box Domain Inhibitor Poloxin Activates the Spindle Assembly Checkpoint and Inhibits Tumor Growth in Vivo. American Journal of Pathology, 2011, 179, 2091-2099.	3.8	78
45	Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nature Communications, 2011, 2, 395.	12.8	76
46	Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget, 2011, 2, 935-947.	1.8	66
47	Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells. Oncogene, 2010, 29, 5591-5603.	5.9	50
48	Functional and Spatial Regulation of Mitotic Centromere- Associated Kinesin by Cyclin-Dependent Kinase 1. Molecular and Cellular Biology, 2010, 30, 2594-2607.	2.3	51
49	Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21 ^{WAF1/CIP1} . Cell Cycle, 2009, 8, 460-472.	2.6	54
50	A Panâ€Specific Inhibitor of the Poloâ€Box Domains of Poloâ€like Kinases Arrests Cancer Cells in Mitosis. ChemBioChem, 2009, 10, 1145-1148.	2.6	71
51	Inhibition of Polo-like Kinase 1 by Blocking Polo-Box Domain-Dependent Protein-Protein Interactions. Chemistry and Biology, 2008, 15, 459-466.	6.0	225
52	Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol. BMC Cancer, 2008, 8, 391.	2.6	97
53	Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene, 2006, 25, 1753-1762.	5.9	111
54	Down-regulation of Polo-like Kinase 1 Elevates Drug Sensitivity of Breast Cancer Cells In vitro and In vivo. Cancer Research, 2006, 66, 5836-5846.	0.9	79

#	Article	IF	CITATIONS
55	Polo-like kinases and oncogenesis. Oncogene, 2005, 24, 267-276.	5.9	363
56	Targeting the G2/M Transition for Antitumor Therapy. Letters in Drug Design and Discovery, 2005, 2, 274-281.	0.7	2
57	Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene, 2004, 23, 5843-5852.	5.9	178
58	Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcellular localization of cyclin B1. Oncogene, 2002, 21, 8282-8292.	5.9	112
59	Efficient internalization of the polo-box of polo-like kinase 1 fused to an Antennapedia peptide results in inhibition of cancer cell proliferation. Cancer Research, 2002, 62, 4186-90.	0.9	46
60	Activation of Protein Kinase D by Signaling through the \hat{l}_{\pm} Subunit of the Heterotrimeric G Protein Gq. Journal of Biological Chemistry, 2000, 275, 2157-2164.	3.4	58
61	Expression of p16 and lack of pRB in primary small cell lung cancer. Journal of Pathology, 1999, 189, 358-362.	4.5	80
62	Polo-like kinase, a novel marker for cellular proliferation. American Journal of Pathology, 1997, 150, 1165-72.	3.8	100
63	Evaluation of exposure level of N-methyl- \hat{l}^2 -carboline-3-carboxamide (FG 7142), an anxiogenic agent in humans. Environmental Pollution, 1996, 94, 267-271.	7.5	6
64	N-Methyl- \hat{l}^2 -carboline-3-carboxamide (FG 7142), an anxiogenic agent in airborne particles and cigarette smoke-polluted indoor air. Environmental Pollution, 1995, 90, 349-355.	7.5	5
65	Glycerophosphorylcholine phosphocholine phosphodiesterase activity in cultured oligodendrocytes, astrocytes, and central nervous tissue of dysmyelinating rodent mutants. Journal of Neuroscience Research, 1992, 31, 68-74.	2.9	14