
## Elena Correa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512957/publications.pdf Version: 2024-02-01



FLENA CODDEA

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Kinking of Transversal Interface Cracks Between Fiber and Matrix. Journal of Applied Mechanics,<br>Transactions ASME, 2007, 74, 703-716.                                                                                           | 2.2  | 114       |
| 2  | Micromechanical view of failure of the matrix in fibrous composite materials. Composites Science and Technology, 2003, 63, 1041-1052.                                                                                              | 7.8  | 91        |
| 3  | A micromechanical view of inter-fibre failure of composite materials under compression transverse to the fibres. Composites Science and Technology, 2008, 68, 2010-2021.                                                           | 7.8  | 53        |
| 4  | Numerical characterisation of the fibre–matrix interface crack growth in composites under transverse compression. Engineering Fracture Mechanics, 2008, 75, 4085-4103.                                                             | 4.3  | 48        |
| 5  | Effects of the presence of compression in transverse cyclic loading on fibre–matrix debonding in<br>unidirectional composite plies. Composites Part A: Applied Science and Manufacturing, 2007, 38,<br>2260-2269.                  | 7.6  | 32        |
| 6  | Effect of thermal residual stresses on matrix failure under transverse tension at micromechanical level: A numerical and experimental analysis. Composites Science and Technology, 2011, 71, 622-629.                              | 7.8  | 32        |
| 7  | Effect of the presence of a secondary transverse load on the inter-fibre failure under tension.<br>Engineering Fracture Mechanics, 2013, 103, 174-189.                                                                             | 4.3  | 31        |
| 8  | Numerical analysis of the influence of a nearby fibre on the interface crack growth in composites under transverse tensile load. Engineering Fracture Mechanics, 2016, 168, 58-75.                                                 | 4.3  | 28        |
| 9  | Effect of a secondary transverse load on the inter-fibre failure under compression. Composites Part<br>B: Engineering, 2014, 65, 57-68.                                                                                            | 12.0 | 25        |
| 10 | Effect of thermal residual stresses on the matrix failure under transverse compression at<br>micromechanical level – A numerical and experimental study. Composites Part A: Applied Science and<br>Manufacturing, 2012, 43, 87-94. | 7.6  | 18        |
| 11 | Design for a cruciform coupon used for tensile biaxial transverse tests on composite materials.<br>Composites Science and Technology, 2017, 145, 138-148.                                                                          | 7.8  | 18        |
| 12 | Micromechanical study on the influence of scale effect in the first stage of damage in composites.<br>Composites Science and Technology, 2018, 160, 1-8.                                                                           | 7.8  | 18        |
| 13 | Microscopical observations of inter-fibre failure under tension. Composites Science and Technology, 2018, 155, 213-220.                                                                                                            | 7.8  | 18        |
| 14 | A Device for Biaxial Testing in Uniaxial Machines. Design, Manufacturing and Experimental Results<br>Using Cruciform Specimens of Composite Materials. Experimental Mechanics, 2018, 58, 49-53.                                    | 2.0  | 18        |
| 15 | The scale effect in composites: An explanation physically based on the different mechanisms of damage involved in failure. Composite Structures, 2021, 257, 113089.                                                                | 5.8  | 17        |
| 16 | Microscopical observations of interface cracks from inter-fibre failure under compression in composite laminates. Composites Part A: Applied Science and Manufacturing, 2018, 110, 76-83.                                          | 7.6  | 14        |
| 17 | BEM multiscale modelling involving micromechanical damage in fibrous composites. Engineering<br>Analysis With Boundary Elements, 2018, 93, 1-9.                                                                                    | 3.7  | 13        |
| 18 | Analysis of interface cracks with contact in composites by 2D BEM. WIT Transactions on State-of-the-art in Science and Engineering, 2005, , 189-248.                                                                               | 0.0  | 13        |

Elena Correa

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Interaction between fibres in the transverse damage in composites. Engineering Fracture Mechanics, 2020, 239, 107273.                                                                                                      | 4.3 | 11        |
| 20 | Special Issue on Modeling of fracture and damage in composite materials. Engineering Fracture Mechanics, 2016, 168, 1.                                                                                                     | 4.3 | 9         |
| 21 | A study of the influence of a nearby fibre on the interface crack growth under transverse compression in composite materials. Engineering Fracture Mechanics, 2018, 193, 1-16.                                             | 4.3 | 7         |
| 22 | BEM analysis of inter-fibre failure under compression in composites: comparison between carbon and glass fibre systems. Plastics, Rubber and Composites, 2011, 40, 333-341.                                                | 2.0 | 6         |
| 23 | Transverse biaxial tests on long fibre reinforced composites. Composite Structures, 2022, 297, 115868.                                                                                                                     | 5.8 | 5         |
| 24 | Fabrication stresses inducing cracking of a mould made of copper. Engineering Failure Analysis, 2009, 16, 358-370.                                                                                                         | 4.0 | 2         |
| 25 | Sequential Linear Analysis for the Prediction of the Symmetrical or Non-Symmetrical Character of the<br>Debond Onset and Propagation Along a Fiber-Matrix Interface. Journal of Multiscale Modeling, 2019,<br>10, 1842004. | 1.1 | 2         |
| 26 | Modelling fibre–matrix interface debonding and matrix cracking in composite laminates. , 2021, ,<br>243-274.                                                                                                               |     | 2         |
| 27 | Effects of the stress state generated during the manufacturing process of copper anodes on the moulds: Warping and cracking. Engineering Failure Analysis, 2009, 16, 309-320.                                              | 4.0 | 1         |
| 28 | Numerical study of the inter-fibre failure under biaxial loads. Procedia Engineering, 2011, 10, 2560-2565.                                                                                                                 | 1.2 | 1         |
| 29 | Fiber–matrix debonding in composite materials. , 2016, , 97-116.                                                                                                                                                           |     | 1         |
| 30 | 2.16 Micromechanics of Interfacial Damage in Composites. , 2018, , 307-341.                                                                                                                                                |     | 1         |
| 31 | Micromechanical Bases for the Prediction of Failure of the Matrix in Fibrous Composites. , 2003, , .                                                                                                                       |     | Ο         |
| 32 | Numerical Study of the Progression of the Micromechanical Debonding Damage in Composites. Key<br>Engineering Materials, 2018, 774, 644-649.                                                                                | 0.4 | 0         |
| 33 | Numerical analysis of the crack paths produced by fibre–matrix interface failure in cross-ply LFRP<br>laminates. Composite Structures, 2022, 284, 115222.                                                                  | 5.8 | 0         |