Manabu Aoyagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of Holding Force and Transportation Force Acting on Tabular Object in Near-Field Acoustic Levitation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1508-1514.	3.0	6
2	Study on Multidegree-of-Freedom Ultrasonic Motor Using Vibration Mode Rotation of Metal Spherical Stator. Actuators, 2022, 11, 27.	2.3	4
3	Development of a multi-drive-mode piezoelectric linear actuator with parallel-arrangement dual stator. Precision Engineering, 2022, 77, 127-140.	3.4	8
4	Examination of Hemispherical Shell Stator for Lightweight Spherical Ultrasonic Motor. International Journal of Automation Technology, 2022, 16, 478-487.	1.0	2
5	Development of rotary-type noncontact-synchronous ultrasonic motor. Japanese Journal of Applied Physics, 2019, 58, SGGD09.	1.5	13
6	Increase of holding force in near-field acoustic levitation of tabular object inserted between opposing vibration sources. Japanese Journal of Applied Physics, 2019, 58, SGGD11.	1.5	13
7	Examination of High-Torque Sandwich-Type Spherical Ultrasonic Motor Using with High-Power Multimode Annular Vibrating Stator. Actuators, 2018, 7, 8.	2.3	15
8	Study on spherical stator for multidegree-of-freedom ultrasonic motor. Japanese Journal of Applied Physics, 2016, 55, 07KE18.	1.5	12
9	Dynamic characteristic analysis of nonresonance-type ultrasonic actuator using electronic circuit simulator. Japanese Journal of Applied Physics, 2015, 54, 07HE14.	1.5	5
10	Development of electromagnetic and piezoelectric hybrid actuator system. Sensors and Actuators A: Physical, 2013, 200, 155-161.	4.1	8
11	Development of 2-DOF Hybrid Actuator System. Key Engineering Materials, 2012, 523-524, 733-738.	0.4	0
12	Stress Analysis of Contact Surface in Ultrasonically Forced Insertion Process. Japanese Journal of Applied Physics, 2012, 51, 07GE08.	1.5	0
13	Prototype and estimation an ultrasonic motor using a transmission rod with a stator vibrator and a rotor at the both ends. , 2012, , .		0
14	Development of a Novel Rotor-Embedded-Type Multidegree-of-Freedom Spherical Ultrasonic Motor. Journal of Robotics and Mechatronics, 2012, 24, 876-883.	1.0	4
15	Stress Analysis of Contact Surface in Ultrasonically Forced Insertion Process. Japanese Journal of Applied Physics, 2012, 51, 07GE08.	1.5	2
16	Experimental Attempts for Deep Insertion in Ultrasonically Forced Insertion Process. Japanese Journal of Applied Physics, 2011, 50, 07HE22.	1.5	2
17	Development of a novel rotor-embedded-type multidegree-of-freedom spherical ultrasonic motor. , 2011, , .		3
18	Novel Transfer Method Using Near-Field Acoustic Levitation and Its Application. Japanese Journal of Applied Physics, 2011, 50, 07HE29.	1.5	15

Manabu Aoyagi

#	Article	IF	CITATIONS
19	1A2-F07 Development and application of hybrid actuator system(Robotics & Mechatronics in Hyper) Tj ETQq 2011, 2011, _1A2-F07_11A2-F07_4.	1 1 0.784 0.0	314 rgBT /(1
20	Novel Transfer Method Using Near-Field Acoustic Levitation and Its Application. Japanese Journal of Applied Physics, 2011, 50, 07HE29.	1.5	9
21	Design and Characteristics of Mode-Coupling LiNbO3Ultrasonic Motor Depended on Width-to-Length Ratio of the Stator Vibrator. Japanese Journal of Applied Physics, 2010, 49, 07HE26.	1.5	8
22	Examination of Sandwich-Type Multidegree-of-Freedom Spherical Ultrasonic Motor. Japanese Journal of Applied Physics, 2010, 49, 07HE24.	1.5	31
23	Novel Thin-Type High-Speed Ultrasonic Motors and Gyro-Moment Motors. , 2010, , 203-218.		0
24	Measurement of LiNbO3Rectangular Plate Under Large Vibration Velocity of the First Longitudinal and Second Flexural Modes. Japanese Journal of Applied Physics, 2008, 47, 4034-4040.	1.5	18
25	Hybrid Ultrasonic Actuator for Force-Feedback Interface. Japanese Journal of Applied Physics, 2008, 47, 4265-4270.	1.5	8
26	Single Phase Drive Ultrasonic Motor Using LiNbO3Rectangular Vibrator. Japanese Journal of Applied Physics, 2008, 47, 4015-4020.	1.5	32
27	Diagonally Symmetric Form Ultrasonic Motor Using LiNbO ₃ Plate. Japanese Journal of Applied Physics, 2007, 46, 4698.	1.5	15
28	Examination of Disk-Type Multidegree-of-Freedom Ultrasonic Motor. Japanese Journal of Applied Physics, 2004, 43, 2884-2890.	1.5	26
29	High-Speed Thin Ultrasonic Spindle Motor and Its Application. Japanese Journal of Applied Physics, 2004, 43, 2873-2878.	1.5	25
30	Spurious-Mode Control of Same-Phase Drive-Type Ultrasonic Motor. Japanese Journal of Applied Physics, 2002, 41, 3252-3258.	1.5	5
31	New designed longitudinal and torsional vibrator combination-type ultrasonic motor. Ferroelectrics, 1999, 232, 241-246.	0.6	1
32	Finite element simulation of slant cantilever beam and approximate equation formula of its resonance frequency Journal of the Acoustical Society of Japan (E), 1996, 17, 55-63.	0.1	0
33	Ultrasonic motor based on coupled longitudinalâ€bending vibrations of a diagonally symmetric piezoelectric ceramic plate. Electronics and Communications in Japan, 1996, 79, 60-67.	0.2	2
34	Piezoelectric actuators driven by the saw-tooth-like motion of a stator. Ultrasonics, 1996, 34, 279-282.	3.9	3
35	Simplified equivalent circuit of an ultrasonic motor and its applications. Ultrasonics, 1996, 34, 275-278.	3.9	15
36	Simplified Equivalent Circuit of Ultrasonic Motor and Its Application to Estimation of Motor Characteristics. Japanese Journal of Applied Physics, 1995, 34, 2752-2755.	1.5	28

Manabu Aoyagi

#	Article	IF	CITATIONS
37	Ultrasonic Motor Using a Large-Diameter Torsional Vibrator with Slant Slits. Japanese Journal of Applied Physics, 1995, 34, 2707-2710.	1.5	6
38	Rod-Type Ultrasonic Motor Using Two Degenerate Second Flexural Vibration Modes and Characteristic Consideration Using Its Equivalent Circuit Expression. Japanese Journal of Applied Physics, 1995, 34, 5292-5297.	1.5	7
39	Single-Resonance Longitudinal and Torsional Vibrator Combination-Type Motor: Improvement of Motor Characteristics. Japanese Journal of Applied Physics, 1994, 33, 3075-3080.	1.5	8
40	Self-Oscillated Ultrasonic Stepping Motor with Function of Angular Displacement Self-Correction: Nonaxisymmetric ((2,1))-Mode Thin Disk Motor. Japanese Journal of Applied Physics, 1994, 33, 3054-3057.	1.5	1
41	Stepping Drive of Self-Oscillation-Type Ultrasonic Motor. Japanese Journal of Applied Physics, 1994, 33, 5374-5377.	1.5	5
42	Transient Response Characteristics of a Same-Phase Drive-Type Ultrasonic Motor. Japanese Journal of Applied Physics, 1994, 33, 5370-5373.	1.5	5
43	Piezoelectric Linear Motors for Driving Head Element of CD-ROM. Japanese Journal of Applied Physics, 1994, 33, 5365-5369.	1.5	19
44	Measuring Methods for High–Power Characteristics of Piezoelectric Materials. Materials Research Society Symposia Proceedings, 1994, 360, 15.	0.1	21
45	Characteristics of Ultrasonic Motor Driven by Pulse Train in Trapezoid Form. Japanese Journal of Applied Physics, 1993, 32, 4194-4197.	1.5	0
46	Ultrasonic Rotary Motor Using Longitudinal and Bending Multimode Vibrator with Mode Coupling Caused by External Additional Asymmetry. Japanese Journal of Applied Physics, 1993, 32, 4190-4193.	1.5	26
47	Dielectric Loss in a Piezoelectric Ceramic Transducer under High-Power Operation; Increase of Dielectric Loss and Its Influence on Transducer Efficiency. Japanese Journal of Applied Physics, 1993, 32, 2418-2421.	1.5	28
48	Waveform of Driving Pulse Train to Prevent Metallic Sound of Ultrasonic Motors. Japanese Journal of Applied Physics, 1993, 32, 2408-2411.	1.5	4
49	Impedance-type equivalent circuits of the piezoelectric vibrator for applications to ultrasonic motors and actuators Journal of the Acoustical Society of Japan (E), 1993, 14, 235-242.	0.1	10
50	Ultrasonic Motors Using Longitudinal and Bending Multimode Vibrators with Mode Coupling by Externally Additional Asymmetry or Internal Nonlinearity. Japanese Journal of Applied Physics, 1992, 31, 3077-3080.	1.5	46
51	Excitation of an Asymmetric Displacement without Residual Vibration and its Application to Construct a Piezoelectric Actuator. Japanese Journal of Applied Physics, 1992, 31, 257.	1.5	4
52	Inspection of Rotor and Stator Vibration of the Ultrasonic Motor Using Longitudinal and Torsional Vibrations. Japanese Journal of Applied Physics, 1992, 31, 251.	1.5	0
53	Ultrasonic Motors Using Longitudinal and Torsional Modes of a Rod Vibrator. Japanese Journal of Applied Physics, 1990, 29, 188.	1.5	6