
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7512055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular polymeric substances of acidophilic microorganisms play a crucial role in heavy metal ions adsorption. International Journal of Environmental Science and Technology, 2022, 19, 4857-4868.	3.5	7
2	Mineralization of lead by Phanerochaete chrysosporium microcapsules loaded with hydroxyapatite. Journal of Hazardous Materials, 2022, 422, 126902.	12.4	11
3	Efficient removal of Cd2+ from aqueous solution with a novel composite of silicon supported nano iron/aluminum/magnesium (hydr)oxides prepared from biotite. Journal of Environmental Management, 2022, 305, 114288.	7.8	4
4	Oxygen vacancy enhances the catalytic activity of trimetallic oxide catalysts for efficient peroxymonosulfate activation. Environmental Science: Nano, 2022, 9, 1037-1051.	4.3	6
5	Column study of enhanced Cr(VI) removal by bio-permeable reactive barrier constructed from novel iron-based material and Sporosarcina saromensis W5. Environmental Science and Pollution Research, 2022, 29, 44893-44905.	5.3	4
6	(Fe0.67Mn0.33)OOH riched in oxygen vacancies facilitated the PMS activation of modified EMR for refractory foaming agent removal from mineral processing wastewater. Chemical Engineering Journal, 2022, 441, 136024.	12.7	21
7	Exploration on the Cr(<scp>VI</scp>) resistance mechanism of a novel thermophilic Cr(<scp>VI</scp>)â€reducing bacteria <i>Anoxybacillus flavithermus</i> <scp>ABF1</scp> isolated from Tengchong geothermal region, China. Environmental Microbiology Reports, 2022, 14, 795-803.	2.4	6
8	Oxalic acid modified copper tailings as an efficient adsorbent with super high capacities for the removal of Pb2+. Chemosphere, 2021, 263, 127833.	8.2	13
9	Column study of enhanced Cr(â¥) removal and removal mechanisms by Sporosarcina saromensis W5 assisted bio-permeable reactive barrier. Journal of Hazardous Materials, 2021, 405, 124115.	12.4	16
10	Efficient removal of diethyl dithiocarbamate with EDTA functionalized electrolytic manganese residue and mechanism exploration. Journal of Hazardous Materials, 2021, 410, 124582.	12.4	21
11	Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Chemosphere, 2021, 269, 128741.	8.2	20
12	Efficient removal of Hg2+ from aqueous solution by a novel composite of nano humboldtine decorated almandine (NHDA): Ion exchange, reducing-oxidation and adsorption. Journal of Hazardous Materials, 2021, 404, 124035.	12.4	28
13	Rubidium chloride modulated the fecal microbiota community in mice. BMC Microbiology, 2021, 21, 46.	3.3	7
14	Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111609.	5.0	37
15	Bioreduction performances and mechanisms of Cr(VI) by Sporosarcina saromensis W5, a novel Cr(VI)-reducing facultative anaerobic bacteria. Journal of Hazardous Materials, 2021, 413, 125411.	12.4	59
16	Eco-friendly leaching of rubidium from biotite-containing minerals with oxalic acid and effective removal of Hg2+ from aqueous solution using the leaching residues. Journal of Cleaner Production, 2021, 306, 127167.	9.3	15
17	Multi-walled carbon nanotubes facilitated Roxarsone elimination in SR-AOPs by accelerating electron transfer in modified electrolytic manganese residue and forming surface activated-complexes. Water Research, 2021, 200, 117266.	11.3	32
18	Efficient removal of arsenite by a composite of amino modified silica supported MnO2/Fe–Al hydroxide (SNMFA) prepared from biotite. Journal of Environmental Management, 2021, 291, 112678.	7.8	7

#	Article	IF	CITATIONS
19	Ag+ significantly promoted the biofilm formation of thermoacidophilic archaeon Acidianus manzaensis YN-25 on chalcopyrite surface. Chemosphere, 2021, 276, 130208.	8.2	5
20	Efficient and selective removal of Ag+ as nano silver particles by the composite of SiO2 supported nano ferrous oxalate. Environmental Research, 2021, 202, 111696.	7.5	6
21	Low concentration of Tween-20 enhanced the adhesion and biofilm formation of Acidianus manzaensis YN-25 on chalcopyrite surface. Chemosphere, 2021, 284, 131403.	8.2	12
22	Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate. Chemical Engineering Journal, 2020, 383, 123209.	12.7	24
23	A novel composite of almandine supported humboldtine nanospheres, in situ synthesized from natural almandine, possesses high removal efficiency of Cr(â¥) over a wide pH range. Journal of Hazardous Materials, 2020, 383, 121199.	12.4	20
24	Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: Acidianus manzaensis YN25. Ecotoxicology and Environmental Safety, 2020, 190, 110084.	6.0	18
25	Effect of panchakavya (organic formulation) on phytoremediation of lead and zinc using Zea mays. Chemosphere, 2020, 246, 125810.	8.2	9
26	Comparative analysis of early-stage adsorption and biofilm formation of thermoacidophilic archaeon Acidianus manzaensis YN-25 on chalcopyrite and pyrite surfaces. Biochemical Engineering Journal, 2020, 163, 107744.	3.6	10
27	A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. Journal of Hazardous Materials, 2020, 400, 123255.	12.4	143
28	Efficient activation of peroxymonosulfate by a novel catalyst prepared directly from electrolytic manganese slag for degradation of recalcitrant organic pollutes. Chemical Engineering Journal, 2020, 401, 126085.	12.7	50
29	Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Ecotoxicology and Environmental Safety, 2020, 201, 110850.	6.0	32
30	A novel composite of SiO2 decorated with nano ferrous oxalate (SDNF) for efficient and highly selective removal of Pb2+ from aqueous solutions. Journal of Hazardous Materials, 2020, 391, 122193.	12.4	21
31	Sulfobacillus thermosulfidooxidans: an acidophile isolated from acid hot spring for the biosorption of heavy metal ions. International Journal of Environmental Science and Technology, 2020, 17, 2655-2666.	3.5	8
32	Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine. Environmental Science and Pollution Research, 2020, 27, 11116-11126.	5.3	1
33	High adsorption capacity and super selectivity for Pb(â¡) by a novel adsorbent: Nano humboldtine/almandine composite prepared from natural almandine. Chemosphere, 2020, 253, 126650.	8.2	35
34	Research on the Adsorption Behavior of Heavy Metal Ions by Porous Material Prepared with Silicate Tailings. Minerals (Basel, Switzerland), 2019, 9, 291.	2.0	119
35	Vertical distribution of microbial communities in chromium-contaminated soil and isolation of Cr(â¥)-Reducing strains. Ecotoxicology and Environmental Safety, 2019, 180, 242-251.	6.0	63
36	The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions. Ecotoxicology and Environmental Safety, 2019, 181, 336-344.	6.0	22

#	Article	IF	CITATIONS
37	Cr(VI) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(VI)-reducing thermophile isolated from Tengchong geothermal region, China. Chemical Engineering Journal, 2019, 371, 524-534.	12.7	45
38	Process optimization on the extraction of rubidium from rubidium-bearing biotite. Minerals Engineering, 2019, 137, 87-93.	4.3	15
39	The Contribution of Long-Terms Static Interactions Between Minerals and Flotation Reagents for the Separation of Fluorite and Calcite. Minerals (Basel, Switzerland), 2019, 9, 699.	2.0	8
40	Both cell envelope and cytoplasm were the locations for chromium(VI) reduction by Bacillus sp. M6. Bioresource Technology, 2019, 273, 130-135.	9.6	63
41	Cell envelop is the key site for Cr(â¥) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(â¥) reducing bacterium. Journal of Hazardous Materials, 2019, 368, 149-155.	12.4	101
42	Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria. Environmental Management, 2016, 57, 1319-1328.	2.7	54
43	Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Canadian Metallurgical Quarterly, 2014, 53, 183-189.	1.2	37
44	Characterization of Five Chromium-Removing Bacteria Isolated from Chromium-Contaminated Soil. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	29
45	The (d)evolution of methanotrophy in the <i>Beijerinckiaceae</i> —a comparative genomics analysis. ISME Journal, 2014, 8, 369-382.	9.8	91
46	Microbial community shifts during the process of marmatite bioleaching. Hydrometallurgy, 2014, 149, 127-131.	4.3	0
47	Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Bioresource Technology, 2014, 153, 300-306.	9.6	57
48	The effect of culture condition and ionic strength on proton adsorption at the surface of the extreme thermophile Acidianus manzaensis. Colloids and Surfaces B: Biointerfaces, 2013, 102, 667-673.	5.0	13
49	Monitoring bacterial community shifts in bioleaching of Ni–Cu sulfide. Bioresource Technology, 2010, 101, 8287-8293.	9.6	17
50	Insights into the dynamics of bacterial communities during chalcopyrite bioleaching. FEMS Microbiology Ecology, 2010, 74, 155-164.	2.7	23
51	Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. Journal of Hazardous Materials, 2009, 163, 869-873.	12.4	128
52	Effects of l-cysteine on Ni–Cu sulfide and marmatite bioleaching by Acidithiobacillus caldus. Bioresource Technology, 2009, 100, 1383-1387.	9.6	22
53	Microbial diversity in acid mineral bioleaching systems of dongxiang copper mine and Yinshan lead–zinc mine. Extremophiles, 2008, 12, 225-234.	2.3	36
54	Microbial diversity of mine water at Zhong Tiaoshan copper mine, China. Journal of Basic Microbiology, 2007, 47, 485-495.	3.3	30

#	Article	IF	CITATIONS
55	Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China. Journal of Applied Microbiology, 2007, 103, 1227-1238.	3.1	42
56	Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine. Extremophiles, 2007, 11, 305-314.	2.3	51
57	Analysis of differential protein expression in Acidithiobacillus ferrooxidans grown under different energy resources respectively using SELDI-ProteinChip technologies. Journal of Microbiological Methods, 2006, 65, 10-20.	1.6	4
58	Analysis of Differential-expressed Proteins of Acidithiobacillus ferrooxidans Grown under Phosphate Starvation. BMB Reports, 2005, 38, 545-549.	2.4	8