Yoh Iwasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7511657/publications.pdf

Version: 2024-02-01

351 19,163 69 124
papers citations h-index g-index

364 364 364 12885
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Optimal composition of chloride cells for osmoregulation in a randomly fluctuating environment. Journal of Theoretical Biology, 2022, 537, 111016.	1.7	O
2	Evolutionary game of life-cycle types in marine benthic invertebrates: Feeding larvae versus nonfeeding larvae versus direct development. Journal of Theoretical Biology, 2022, 537, 111019.	1.7	5
3	Escaping stochastic extinction of mutant virus: Temporal pattern of emergence of drug resistance within a host. Journal of Theoretical Biology, 2022, 537, 111029.	1.7	4
4	On the role of eviction in group living sex changers. Behavioral Ecology and Sociobiology, 2022, 76, 1.	1.4	1
5	Why did sauropod dinosaurs grow so big? $\hat{a}\in$ A possible answer from the life history theory. Journal of Theoretical Biology, 2021, 508, 110485.	1.7	1
6	Optimal control of root nodulation – Prediction of life history theory of a mutualistic system. Journal of Theoretical Biology, 2021, 510, 110544.	1.7	4
7	Eco-evolutionary dynamics may show an irreversible regime shift, illustrated by salmonids facing climate change. Theoretical Ecology, 2021, 14, 345-357.	1.0	1
8	Processes affecting size of fish schools in agentâ€based model. Population Ecology, 2021, 63, 219-229.	1.2	0
9	Evolutionary game in an androdioecious population: Coupling of outcrossing and male production. Journal of Theoretical Biology, 2021, 513, 110594.	1.7	5
10	Recurrent speciation rates on islands decline with species number. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210255.	2.6	5
11	The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change. Nature Communications, 2021, 12, 3985.	12.8	24
12	Spatial distribution of gut microbes along the intestinal duct. Journal of Theoretical Biology, 2021, 523, 110725.	1.7	2
13	Evolution of life cycle dimorphism: An example of sacoglossan sea slugs. Journal of Theoretical Biology, 2021, 525, 110760.	1.7	2
14	Virulence of a virus: How it depends on growth rate, effectors, memory cells, and immune escape. Journal of Theoretical Biology, 2021, 530, 110875.	1.7	4
15	Evolution of male nuptial gift and female remating: A quantitative genetic model. Journal of Theoretical Biology, 2021, 533, 110939.	1.7	1
16	Conflict theory of genomic imprinting in mammals. Population Ecology, 2020, 62, 28-37.	1.2	4
17	Seasonality in the production of male larvae: a game model for parasitic barnacles (Cirripedia:) Tj ETQq1 1 0.784	314 rgBT 0.8	/Overlock 101
18	Positive Feedback between Behavioral and Hormonal Dynamics Leads to Differentiation of Life-History Tactics. American Naturalist, 2020, 196, 679-689.	2.1	0

#	Article	IF	CITATIONS
19	Enhanced risk of cancer in companion animals as a response to the longevity. Scientific Reports, 2020, 10, 19508.	3.3	4
20	How Thermodynamics Illuminates Population Interactions in Microbial Communities. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	2
21	Microbial material cycling, energetic constraints and ecosystem expansion in subsurface ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200610.	2.6	2
22	Autoimmune diseases initiated by pathogen infection: Mathematical modeling. Journal of Theoretical Biology, 2020, 498, 110296.	1.7	9
23	Ecotourism development and the heterogeneity of tourists. Theoretical Ecology, 2020, 13, 371-383.	1.0	5
24	Coordinated changes in cell membrane and cytoplasm during maturation of apoptotic bleb. Molecular Biology of the Cell, 2020, 31, 833-844.	2.1	29
25	Task allocation in a cooperative society: specialized castes or age-dependent switching among ant workers. Scientific Reports, 2020, 10, 3339.	3.3	10
26	JTB Editorial Malpractice: A Case Report. Journal of Theoretical Biology, 2020, 488, 110171.	1.7	6
27	Bovine mastitis and optimal disease management: Dynamic programming analysis. Journal of Theoretical Biology, 2020, 498, 110292.	1.7	5
28	The fitness of chemotrophs increases when their catabolic byâ€products are consumed by other species. Ecology Letters, 2019, 22, 1994-2005.	6.4	7
29	Variation in plastic responses to light results from selection in different competitive environments—A game theoretical approach using virtual plants. PLoS Computational Biology, 2019, 15, e1007253.	3.2	14
30	Social evolution leads to persistent corruption. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13276-13281.	7.1	34
31	Population dynamics of chemotrophs in anaerobic conditions where the metabolic energy acquisition per redox reaction is limited. Journal of Theoretical Biology, 2019, 467, 164-173.	1.7	8
32	A population model for diapausing multivoltine insects under asymmetric cannibalism. Population Ecology, 2019, 61, 35-44.	1.2	1
33	Coupled dynamics of intestinal microbiome and immune system—A mathematical study. Journal of Theoretical Biology, 2019, 464, 9-20.	1.7	5
34	Chemical mimicry or crypsisâ€"the evolutionary game played by parasitic ants invading other colonies. Theoretical Ecology, 2019, 12, 391-399.	1.0	3
35	How do toxicants affect epidemiological dynamics?. Oikos, 2019, 128, 729-740.	2.7	2
36	Interactions between immunotoxicants and parasite stress: Implications for host health. Journal of Theoretical Biology, 2018, 445, 120-127.	1.7	7

#	Article	IF	Citations
37	Profit Sharing as a Management Strategy for a State-owned Teak Plantation at High Risk for Illegal Logging. Ecological Economics, 2018, 149, 140-148.	5.7	9
38	Evolutionary bistability of life history decision in male masu salmon. Journal of Theoretical Biology, 2018, 448, 104-111.	1.7	4
39	Temperature-dependent sex determination, realized by hormonal dynamics with enzymatic reactions sensitive to ambient temperature. Journal of Theoretical Biology, 2018, 453, 146-155.	1.7	26
40	Why is bidirectional sex change rare?. Journal of Theoretical Biology, 2018, 453, 136-145.	1.7	3
41	Exploiting a cognitive bias promotes cooperation in social dilemma experiments. Nature Communications, 2018, 9, 2954.	12.8	160
42	The Persistence of a Local Dialect When a National Standard Language is Present: An Evolutionary Dynamics Model of Cultural Diversity. Bulletin of Mathematical Biology, 2018, 80, 2761-2786.	1.9	2
43	Profit sharing and agroforestry: a theoretical study of potential conflicts in managing illegal logging risk in tropical forests. Theoretical Ecology, 2018, 11, 479-488.	1.0	1
44	Advantage for the sex changer who retains the gonad of the nonfunctional sex. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	15
45	When is allergen immunotherapy effective?. Journal of Theoretical Biology, 2017, 425, 23-42.	1.7	6
46	Parapatric speciation in three islands: dynamics of geographical configuration of allele sharing. Royal Society Open Science, 2017, 4, 160819.	2.4	10
47	Games of corruption in preventing the overuse of common-pool resources. Journal of Theoretical Biology, 2017, 428, 76-86.	1.7	13
48	A tipping point in parapatric speciation. Journal of Theoretical Biology, 2017, 421, 81-92.	1.7	9
49	Be a good loser: A theoretical model for subordinate decision-making on bi-directional sex change in haremic fishes. Journal of Theoretical Biology, 2017, 421, 127-135.	1.7	6
50	Onymity promotes cooperation in social dilemma experiments. Science Advances, 2017, 3, e1601444.	10.3	199
51	Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies. Journal of Theoretical Biology, 2017, 420, 213-219.	1.7	42
52	A forecast for extinction debt in the presence of speciation. Journal of Theoretical Biology, 2017, 415, 48-52.	1.7	3
53	Number of infection events per cell during HIV-1 cell-free infection. Scientific Reports, 2017, 7, 6559.	3.3	13
54	Phase diagram of a multiple forces model for animal group formation: marches versus circles determined by the relative strength of alignment and cohesion. Population Ecology, 2016, 58, 357-370.	1.2	2

#	Article	IF	Citations
55	Smallness of the number of incompatibility loci can facilitate parapatric speciation. Journal of Theoretical Biology, 2016, 405, 36-45.	1.7	10
56	Incorporating an ontogenetic perspective into evolutionary theory of sexual size dimorphism. Evolution; International Journal of Organic Evolution, 2016, 70, 369-384.	2.3	15
57	Repopulation dynamics of single haematopoietic stem cells in mouse transplantation experiments: Importance of stem cell composition in competitor cells. Journal of Theoretical Biology, 2016, 394, 57-67.	1.7	4
58	Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin. Scientific Reports, 2015, 5, 12256.	3.3	14
59	Cell–cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes. Journal of the Royal Society Interface, 2015, 12, 20150342.	3.4	22
60	An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer. PLoS Computational Biology, 2015, 11, e1004350.	3.2	25
61	Reproductive interference can promote recurrent speciation. Population Ecology, 2015, 57, 343-346.	1.2	8
62	Coupled social and ecological dynamics of herders in Mongolian rangelands. Ecological Economics, 2015, 114, 208-217.	5.7	18
63	Phenotype adjustment promotes adaptive evolution in a game without conflict. Theoretical Population Biology, 2015, 102, 16-25.	1.1	3
64	Cultural evolution of hinoeuma superstition controlling human mate choice: The role of half-believer. Journal of Theoretical Biology, 2015, 385, 40-49.	1.7	2
65	The evolutionary advantage of haploid versus diploid microbes in nutrient-poor environments. Journal of Theoretical Biology, 2015, 383, 116-129.	1.7	6
66	Games of corruption: How to suppress illegal logging. Journal of Theoretical Biology, 2015, 367, 1-13.	1.7	48
67	Reputation Effects in Public and Private Interactions. PLoS Computational Biology, 2015, 11, e1004527.	3.2	51
68	Agent-Based Mapping of Credit Risk for Sustainable Microfinance. PLoS ONE, 2015, 10, e0126447.	2.5	6
69	Barriers to Cooperation Aid Ideological Rigidity and Threaten Societal Collapse. PLoS Computational Biology, 2014, 10, e1003618.	3.2	11
70	THE HANDICAP PROCESS FAVORS EXAGGERATED, RATHER THAN REDUCED, SEXUAL ORNAMENTS. Evolution; International Journal of Organic Evolution, 2014, 68, 2534-2549.	2.3	14
71	SIGNALING EFFICACY DRIVES THE EVOLUTION OF LARGER SEXUAL ORNAMENTS BY SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2014, 68, 216-229.	2.3	27
72	Modeling socioâ€economic aspects of ecosystem management and biodiversity conservation. Population Ecology, 2014, 56, 27-40.	1.2	13

#	Article	IF	CITATIONS
73	Parasite infection drives the evolution of state-dependent dispersal of the host. Theoretical Population Biology, 2014, 92, 1-13.	1.1	22
74	Evolution of sex determination and sexually dimorphic larval sizes in parasitic barnacles. Journal of Theoretical Biology, 2014, 347, 7-16.	1.7	15
75	The conflict of social norms may cause the collapse of cooperation: Indirect reciprocity with opposing attitudes towards in-group favoritism. Journal of Theoretical Biology, 2014, 346, 34-46.	1.7	16
76	The balance between self-renewal and differentiation probabilities determines longevity of hematopoietic stem cells. Experimental Hematology, 2013, 41, S32.	0.4	0
77	Graduated punishment is efficient in resource management if people are heterogeneous. Journal of Theoretical Biology, 2013, 333, 117-125.	1.7	25
78	Soil disturbances can suppress the invasion of alien plants under plant–soil feedback. Ecological Modelling, 2013, 260, 42-49.	2.5	6
79	Evolution of stalk/spore ratio in a social amoeba: Cell-to-cell interaction via a signaling chemical shaped by cheating risk. Journal of Theoretical Biology, 2013, 336, 110-118.	1.7	15
80	Dwarf males, large hermaphrodites and females in marine species: A dynamic optimization model of sex allocation and growth. Theoretical Population Biology, 2013, 85, 49-57.	1.1	14
81	Comment on "Extinction Debt and Windows of Conservation Opportunity in the Brazilian Amazon". Science, 2013, 339, 271-271.	12.6	10
82	Dwarf males and hermaphrodites can coexist in marine sedentary species if the opportunity to become a dwarf male is limited. Journal of Theoretical Biology, 2013, 334, 101-108.	1.7	11
83	Species persistence in landscapes with spatial variation in habitat quality: A pair approximation model. Journal of Theoretical Biology, 2013, 335, 22-30.	1.7	42
84	Individual and combined suppressive effects of submerged and floating-leaved macrophytes on algal blooms. Journal of Theoretical Biology, 2013, 319, 122-133.	1.7	17
85	Coevolution of mast seeding in trees and extended diapause of seed predators. Journal of Theoretical Biology, 2013, 339, 129-139.	1.7	9
86	Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon, 2013, 62, 249-266.	0.7	85
87	First passage time to allopatric speciation. Interface Focus, 2013, 3, 20130026.	3.0	31
88	Evolutionary Branching in a Finite Population: Deterministic Branching <i>vs.</i> Stochastic Branching. Genetics, 2013, 193, 229-241.	2.9	48
89	A network-based evolutionary method to solve inconsistent simultaneous equations approximately. , $2013, , .$		1
90	Stochastic Tunneling of Two Mutations in a Population of Cancer Cells. PLoS ONE, 2013, 8, e65724.	2.5	13

#	Article	IF	CITATIONS
91	Mathematical Study of the Role of Delta/Notch Lateral Inhibition during Primary Branching of Drosophila Trachea Development. Biophysical Journal, 2012, 103, 2549-2559.	0.5	8
92	Neutrality without incoherence: a response to Clark. Trends in Ecology and Evolution, 2012, 27, 363.	8.7	4
93	Optimal investment for enhancing social concern about biodiversity conservation: A dynamic approach. Theoretical Population Biology, 2012, 82, 177-186.	1.1	3
94	Paradox of marine protected areas: suppression of fishing may cause species loss. Population Ecology, 2012, 54, 475-485.	1.2	30
95	Multiple feedback loops achieve robust localization of wingless expression in Drosophila notum development. Journal of Theoretical Biology, 2012, 292, 18-29.	1.7	6
96	A stochastic model of chromatin modification: Cell population coding of winter memory in plants. Journal of Theoretical Biology, 2012, 302, 6-17.	1.7	41
97	Variability in the evolutionarily stable seasonal timing of germination and maturation of annuals and the mode of competition. Journal of Theoretical Biology, 2012, 304, 66-80.	1.7	6
98	Cultural evolution of a belief controlling human mate choice: Dynamic modeling of the hinoeuma superstition in Japan. Journal of Theoretical Biology, 2012, 309, 20-28.	1.7	7
99	Evolutionary jumping and breakthrough in tree masting evolution. Theoretical Population Biology, 2012, 81, 20-31.	1.1	5
100	Coding Design of Positional Information for Robust Morphogenesis. Biophysical Journal, 2011, 101, 2324-2335.	0.5	14
101	COEVOLUTION OF PHENOTYPIC PLASTICITY IN PREDATOR AND PREY: WHY ARE INDUCIBLE OFFENSES RARER THAN INDUCIBLE DEFENSES?. Evolution; International Journal of Organic Evolution, 2011, 65, 1079-1087.	2.3	23
102	Tourists and traditional divers in a common fishing ground. Ecological Economics, 2011, 70, 2350-2360.	5.7	19
103	Long-term effect of coral transplantation: Restoration goals and the choice of species. Journal of Theoretical Biology, 2011, 280, 127-138.	1.7	12
104	Green world maintained by adaptation. Theoretical Ecology, 2011, 4, 201-210.	1.0	7
105	Regime shift and robustness of organism-created environments: A model for microbial ecosystems. Journal of Theoretical Biology, 2011, 269, 297-306.	1.7	3
106	Optimal choice of species and size class for transplanting coral community. Journal of Theoretical Biology, 2011, 273, 130-137.	1.7	9
107	T cell anergy as a strategy to reduce the risk of autoimmunity. Journal of Theoretical Biology, 2011, 277, 74-82.	1.7	0
108	Unique coevolutionary dynamics in a predator–prey system. Journal of Theoretical Biology, 2011, 277, 83-89.	1.7	48

#	Article	IF	CITATIONS
109	Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2316-2321.	7.1	84
110	Evolutionary Dynamics of Intratumor Heterogeneity. PLoS ONE, 2011, 6, e17866.	2.5	51
111	Synchronized oscillation of the segmentation clock gene in vertebrate development. Journal of Mathematical Biology, 2010, 61, 207-229.	1.9	19
112	Optimal number of regulatory T cells. Journal of Theoretical Biology, 2010, 263, 210-218.	1.7	4
113	Pollinator coupling can induce synchronized flowering in different plant species. Journal of Theoretical Biology, 2010, 267, 153-163.	1.7	21
114	Paradox of nutrient removal in coupled socioeconomic and ecological dynamics for lake water pollution. Theoretical Ecology, 2010, 3, 113-122.	1.0	19
115	Size-dependent sex change can be the ESS without any size advantage of reproduction when mortality is size-dependent. Theoretical Population Biology, 2010, 78, 183-191.	1.1	3
116	Global mutations and local mutations have very different effects on evolution, illustrated by mixed strategies of asymmetric binary games. Journal of Theoretical Biology, 2010, 262, 223-231.	1.7	4
117	Optimal seasonal schedules and the relative dominance of heteromorphic and isomorphic life cycles in macroalgae. Journal of Theoretical Biology, 2010, 267, 201-212.	1.7	25
118	SEXUAL SELECTION CAN INCREASE THE EFFECT OF RANDOM GENETIC DRIFT-A QUANTITATIVE GENETIC MODEL OF POLYMORPHISM IN OOPHAGA PUMILIO, THE STRAWBERRY POISON-DART FROG. Evolution; International Journal of Organic Evolution, 2010, 64, 1719-1728.	2.3	43
119	Both seedling banks and specialist seed predators promote the evolution of synchronized and intermittent reproduction (masting) in trees. Journal of Ecology, 2010, 98, 1398-1408.	4.0	23
120	Evolution towards oscillation or stability in a predator–prey system. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3163-3171.	2.6	63
121	Random cell movement promotes synchronization of the segmentation clock. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4979-4984.	7.1	77
122	Accuracy of positional information provided by multiple morphogen gradients with correlated noise. Physical Review E, 2009, 79, 061905.	2.1	29
123	Conflict between groups of players in coupled socio-economic and ecological dynamics. Ecological Economics, 2009, 68, 1106-1115.	5.7	26
124	Estimating the spatiotemporal pattern of volumetric growth rate from fate maps in chick limb development. Developmental Dynamics, 2009, 238, 415-422.	1.8	2
125	Mechanisms for split localization of <i>Fgf10</i> expression in early lung development. Developmental Dynamics, 2009, 238, 2813-2822.	1.8	48
126	Traveling wave formation in vertebrate segmentation. Journal of Theoretical Biology, 2009, 257, 385-396.	1.7	41

#	Article	IF	Citations
127	Dynamic modeling of branching morphogenesis of ureteric bud in early kidney development. Journal of Theoretical Biology, 2009, 259, 58-66.	1.7	32
128	The pace of evolution across fitness valleys. Journal of Theoretical Biology, 2009, 259, 613-620.	1.7	49
129	The coupled dynamics of human socioâ€economic choice and lake water system: the interaction of two sources of nonlinearity. Ecological Research, 2009, 24, 479-489.	1.5	30
130	Preface to Special Feature: interface between ecology and social sciences in global environmental change. Ecological Research, 2009, 24, 477-478.	1.5	1
131	Indirect reciprocity provides only a narrow margin of efficiency for costly punishment. Nature, 2009, 457, 79-82.	27.8	320
132	Advantage of having regulatory T cells requires localized suppression of immune reactions. Journal of Theoretical Biology, 2009, 260, 392-401.	1.7	2
133	Distance between AER and ZPA Is Defined by Feed-Forward Loop and Is Stabilized by their Feedback Loop in Vertebrate Limb Bud. Bulletin of Mathematical Biology, 2008, 70, 438-459.	1.9	21
134	Growth Based Morphogenesis of Vertebrate Limb Bud. Bulletin of Mathematical Biology, 2008, 70, 1957-1978.	1.9	32
135	Comparison between perfect information and passive–adaptive social learning models of forest harvesting. Theoretical Ecology, 2008, 1, 189-197.	1.0	7
136	Spatial heterogeneity of mortality and temporal fluctuation in fertility promote coexistence but not vice versa: A random-community approach. Journal of Theoretical Biology, 2008, 253, 593-600.	1.7	3
137	Optimal placement of multiple morphogen sources. Physical Review E, 2008, 77, 041909.	2.1	16
138	Directional Evolution of Virus Within a Host Under Immune Selection. , 2007, , 155-176.		1
139	The Evolution of Two Mutations During Clonal Expansion. Genetics, 2007, 177, 2209-2221.	2.9	57
140	Ecology as a Modern Science., 2007, , 1-3.		0
141	Global analyses of evolutionary dynamics and exhaustive search for social norms that maintain cooperation by reputation. Journal of Theoretical Biology, 2007, 244, 518-531.	1.7	85
142	Coupled ecological–social dynamics in a forested landscape: Spatial interactions and information flow. Journal of Theoretical Biology, 2007, 246, 695-707.	1.7	41
143	The fastest evolutionary trajectory. Journal of Theoretical Biology, 2007, 249, 617-623.	1.7	20
144	REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE. Evolution; International Journal of Organic Evolution, 2007, 55, 830-834.	2.3	4

#	Article	IF	Citations
145	Nonlinear behavior of the socio-economic dynamics for lake eutrophication control. Ecological Economics, 2007, 63, 219-229.	5.7	49
146	Synchronized deforestation induced by social learning under uncertainty of forest-use value. Ecological Economics, 2007, 63, 452-462.	5.7	33
147	Single-class orbits in nonlinear Leslie matrix models for semelparous populations. Journal of Mathematical Biology, 2007, 55, 781-802.	1.9	24
148	Spatial pattern analysis in forest dynamics: deviation from power law and direction of regeneration waves. Ecological Research, 2007, 22, 197-203.	1.5	7
149	Forum "Ecology and Economics― a preface. Ecological Research, 2007, 22, 1-2.	1.5	0
150	Turing Pattern Formation with Two Kinds of Cells andÂaÂDiffusive Chemical. Bulletin of Mathematical Biology, 2007, 69, 2515-2536.	1.9	21
151	Optimal conservation strategy in fluctuating environments with species interactions: Resource-enhancement of the native species versus extermination of the alien species. Journal of Theoretical Biology, 2007, 244, 46-58.	1.7	7
152	Robustness of the signal transduction system of the mammalian JAK/STAT pathway and dimerization steps. Journal of Theoretical Biology, 2007, 246, 1-9.	1.7	11
153	Probability of resistance evolution for exponentially growing virus in the host. Journal of Theoretical Biology, 2007, 246, 323-331.	1.7	8
154	A Survey of Indirect Reciprocity., 2007,, 21-49.		12
155	COOPERATION MAINTAINED BY FITNESS ADJUSTMENT. Evolutionary Ecology Research, 2007, 9, 1023-1041.	2.0	1
156	Bifurcation analyses in the cyanobacterial circadian clock model. , 2006, , .		0
157	Tragedy of the commons in plant water use. Water Resources Research, 2006, 42, .	4.2	38
158	A Model for the Circadian Rhythm of Cyanobacteria that Maintains Oscillation without Gene Expression. Biophysical Journal, 2006, 91, 2015-2023.	0.5	56
159	1P489 Mathematical modeling of gene interactions associated with Wnt signaling pathway in colorectal carcinoma(24. Mathematical biology,Poster Session,Abstract,Meeting Program of EABS &) Tj ETQq1 1	0.084314	rgBT /Overlo
160	The leading eight: Social norms that can maintain cooperation by indirect reciprocity. Journal of Theoretical Biology, 2006, 239, 435-444.	1.7	332
161	The coevolution of altruism and punishment: Role of the selfish punisher. Journal of Theoretical Biology, 2006, 240, 475-488.	1.7	175
162	Stochastic dynamics of metastasis formation. Journal of Theoretical Biology, 2006, 240, 521-530.	1.7	57

#	Article	IF	CITATIONS
163	Genetic instability and clonal expansion. Journal of Theoretical Biology, 2006, 241, 26-32.	1.7	28
164	A symmetry of fixation times in evoultionary dynamics. Journal of Theoretical Biology, 2006, 243, 245-251.	1.7	80
165	Space and society: a preface to the special feature on "Theoretical Ecology― Ecological Research, 2006, 21, 325-327.	1.5	1
166	Coupled ecological and social dynamics in a forested landscape: the deviation of individual decisions from the social optimum. Ecological Research, 2006, 21, 370-379.	1.5	62
167	Dynamics of metastasis suppressor gene inactivation. Journal of Theoretical Biology, 2006, 241, 676-689.	1.7	16
168	Direction of regeneration waves in grid-based models for forest dynamics. Journal of Theoretical Biology, 2006, 242, 363-371.	1.7	3
169	How canalization can make loops: A new model of reticulated leaf vascular pattern formation. Journal of Theoretical Biology, 2006, 243, 235-244.	1.7	57
170	Deviation from power law, spatial data of forest canopy gaps, and three lattice models. Ecological Modelling, 2006, 198, 399-408.	2.5	10
171	Evolution of Resistance to Cancer Therapy. Current Pharmaceutical Design, 2006, 12, 261-271.	1.9	84
172	Genetic Addiction: Selfish Gene's Strategy for Symbiosis in the Genome. Genetics, 2006, 172, 1309-1323.	2.9	62
173	Evolution of Resistance During Clonal Expansion. Genetics, 2006, 172, 2557-2566.	2.9	210
174	The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14931-14934.	7.1	74
175	Invasibility of seed prdators on synchronized intermittent seed production of host plants., 2006,, 271-288.		0
176	Virus evolution within patients increases pathogenicity. Journal of Theoretical Biology, 2005, 232, 17-26.	1.7	35
177	Extinction risk of a meta-population: aggregation approach. Journal of Theoretical Biology, 2005, 232, 203-216.	1.7	17
178	Temperature compensation in circadian clock models. Journal of Theoretical Biology, 2005, 233, 453-468.	1.7	50
179	Self-organization of the vascular system in plant leaves: Inter-dependent dynamics of auxin flux and carrier proteins. Journal of Theoretical Biology, 2005, 236, 366-375.	1.7	109
180	Labyrinthine versus straight-striped patterns generated by two-dimensional Turing systems. Journal of Theoretical Biology, 2005, 237, 104-116.	1.7	17

#	Article	IF	CITATIONS
181	The evolution of a MÃ $\frac{1}{4}$ llerian mimic in a spatially distributed community. Journal of Theoretical Biology, 2005, 237, 87-103.	1.7	53
182	Dynamics of chronic myeloid leukaemia. Nature, 2005, 435, 1267-1270.	27.8	795
183	Can chromosomal instability initiate tumorigenesis?. Seminars in Cancer Biology, 2005, 15, 43-49.	9.6	177
184	Dynamics of colorectal cancer. Seminars in Cancer Biology, 2005, 15, 484-493.	9.6	112
185	Population genetics of tumor suppressor genes. Journal of Theoretical Biology, 2005, 233, 15-23.	1.7	52
186	Mateâ€Choice Copying as Bayesian Decision Making. American Naturalist, 2005, 165, 403-410.	2.1	19
187	Optimal Growth Pattern of Defensive Organs: The Diversity of Shell Growth among Mollusks. American Naturalist, 2005, 165, 238-249.	2.1	37
188	Stochastic Tunnels in Evolutionary Dynamics. Genetics, 2004, 166, 1571-1579.	2.9	233
189	On the emergence of multifocal cancers. Journal of Carcinogenesis, 2004, 3, 13.	2.5	7
190	Linear Model of Colon Cancer Initiation. Cell Cycle, 2004, 3, 356-360.	2.6	83
191	Evolutionary dynamics of tumor suppressor gene inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10635-10638.	7.1	94
192	Mechanisms inducing spatially extended synchrony in mast seeding: The role of pollen coupling and environmental fluctuation. Ecological Research, 2004, 19, 13-20.	1.5	31
193	Spatio-temporal development of forests - current trends in field methods and models. Oikos, 2004, 107, 3-15.	2.7	93
194	Dynamics of cancer progression. Nature Reviews Cancer, 2004, 4, 197-205.	28.4	406
195	Some basic properties of immune selection. Journal of Theoretical Biology, 2004, 229, 179-188.	1.7	40
196	Multiple-year optimization of conservation effort and monitoring effort for a fluctuating population. Journal of Theoretical Biology, 2004, 230, 157-171.	1.7	17
197	Coexistence of a sexual and an unisexual form stabilized by parasites. Journal of Theoretical Biology, 2004, 226, 185-194.	1.7	10
198	Evolutionary dynamics of invasion and escape. Journal of Theoretical Biology, 2004, 226, 205-214.	1.7	114

#	Article	IF	CITATIONS
199	Estimating local interaction from spatiotemporal forest data, and Monte Carlo bias correction. Journal of Theoretical Biology, 2004, 226, 225-235.	1.7	11
200	Dynamic optimization of host defense, immune memory, and post-infection pathogen levels in mammals. Journal of Theoretical Biology, 2004, 228, 17-29.	1.7	31
201	Forest gap dynamics and the Ising model. Journal of Theoretical Biology, 2004, 230, 65-75.	1.7	28
202	How should we define goodness?â€"reputation dynamics in indirect reciprocity. Journal of Theoretical Biology, 2004, 231, 107-120.	1.7	365
203	To eat or not to eat: The NICE way. Journal of Carcinogenesis, 2004, 3, 3.	2.5	1
204	Linear model of colon cancer initiation. Cell Cycle, 2004, 3, 358-62.	2.6	42
205	Local Regulation of Homeostasis Favors Chromosomal Instability. Current Biology, 2003, 13, 581-584.	3.9	38
206	Origin of directionality in the fish stripe pattern. Developmental Dynamics, 2003, 226, 627-633.	1.8	37
207	Optimal Conservation Effort for a Population in a Stochastic Environment. Journal of Theoretical Biology, 2003, 220, 215-231.	1.7	11
208	Difference in the Retinal Cone Mosaic Pattern Between Zebrafish and Medaka: Cell-Rearrangement Model. Journal of Theoretical Biology, 2003, 221, 289-300.	1.7	16
209	Possibility of Tissue Separation Caused by Cell Adhesion. Journal of Theoretical Biology, 2003, 221, 459-474.	1.7	8
210	Conservation effort and assessment of population size in fluctuating environments. Journal of Theoretical Biology, 2003, 224, 167-182.	1.7	10
211	Somatic selection for and against cancer. Journal of Theoretical Biology, 2003, 225, 377-382.	1.7	61
212	Optimal choice between feedforward and feedback control in gene expression to cope with unpredictable danger. Journal of Theoretical Biology, 2003, 223, 149-160.	1.7	21
213	Stripes, spots, or reversed spots in two-dimensional Turing systems. Journal of Theoretical Biology, 2003, 224, 339-350.	1.7	53
214	Incomplete mixing promotes species coexistence in a lottery model with permanent spatial heterogeneity. Theoretical Population Biology, 2003, 64, 359-368.	1.1	28
215	Evolutionary dynamics of escape from biomedical intervention. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2573-2578.	2.6	85
216	Extinction risk to bird populations caused by DDT exposure. Chemosphere, 2003, 53, 377-387.	8.2	21

#	Article	IF	Citations
217	Environmental risk evaluation of chemicals: achievements of the project and seeds for future––development of metrics for evaluating risks. Chemosphere, 2003, 53, 389-398.	8.2	5
218	Stochastic elimination of cancer cells. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2017-2024.	2.6	49
219	The linear process of somatic evolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14966-14969.	7.1	205
220	Patterns of Cell Division and the Risk of Cancer. Genetics, 2003, 163, 1527-1532.	2.9	56
221	Saturation of Enzyme Kinetics in Circadian Clock Models. Journal of Biological Rhythms, 2002, 17, 568-577.	2.6	45
222	SPATIALLY LIMITED POLLEN EXCHANGE AND A LONG-RANGE SYNCHRONIZATION OF TREES. Ecology, 2002, 83, 993-1005.	3.2	93
223	Directionality of Stripes Formed by Anisotropic Reaction–Diffusion Models. Journal of Theoretical Biology, 2002, 214, 549-561.	1.7	43
224	Comparative Study of Circadian Clock Models, in Search of Processes Promoting Oscillation. Journal of Theoretical Biology, 2002, 216, 193-208.	1.7	59
225	Optimal Defense Strategy: Storage vs. New Production. Journal of Theoretical Biology, 2002, 219, 309-323.	1.7	24
226	Extinction risk to herring gull populations from DDT exposure. Environmental Toxicology and Chemistry, 2002, 21, 195-202.	4.3	24
227	The synchronized and intermittent reproduction of forest trees is mediated by the Moran effect, only in association with pollen coupling. Journal of Ecology, 2002, 90, 830-838.	4.0	101
228	Spatially Limited Pollen Exchange and a Long-Range Synchronization of Trees. Ecology, 2002, 83, 993.	3.2	2
229	EXTINCTION RISK TO HERRING GULL POPULATIONS FROM DDT EXPOSURE. Environmental Toxicology and Chemistry, 2002, 21, 195.	4.3	2
230	Variable Timing of Reproduction in Unpredictable Environments: Adaption of Flood Plain Plants. Theoretical Population Biology, 2001, 60, 1-15.	1.1	38
231	Measurement of Mutational Flow Implies Both a High New-Mutation Rate for Huntington Disease and Substantial Underascertainment of Late-Onset Cases. American Journal of Human Genetics, 2001, 68, 373-385.	6.2	64
232	How does mate choice contribute to exaggeration and diversity in sexual characters?., 2001,, 203-220.		4
233	Size distribution dynamics for a marine sessile organism with space-limitation in growth and recruitment: application to a coral population. Journal of Animal Ecology, 2001, 70, 579-589.	2.8	18
234	Inducible Defense against Pathogens and Parasites: Optimal Choice among Multiple Options. Journal of Theoretical Biology, 2001, 209, 233-247.	1.7	110

#	Article	IF	CITATIONS
235	Dynamics of Marine Sessile Organisms with Space-limited Growth and Recruitment: Application to Corals. Journal of Theoretical Biology, 2001, 210, 67-80.	1.7	22
236	REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE. Evolution; International Journal of Organic Evolution, 2001, 55, 830.	2.3	26
237	The Evolution of X-Linked Genomic Imprinting. Genetics, 2001, 158, 1801-1809.	2.9	44
238	Pollen Coupling of Forest Trees: Forming Synchronized and Periodic Reproduction out of Chaos. Journal of Theoretical Biology, 2000, 203, 63-84.	1.7	212
239	Comparing Risk Factors for Population Extinction. Journal of Theoretical Biology, 2000, 204, 327-336.	1.7	30
240	Extinction Risk of a Density-dependent Population Estimated from a Time Series of Population Size. Journal of Theoretical Biology, 2000, 204, 337-359.	1.7	65
241	Estimate of population extinction risk and its application to ecological risk management. Population Ecology, 2000, 42, 73-80.	1.2	27
242	Lattice Models and Pair Approximation in Ecology. , 2000, , 227-251.		26
243	Competition by Allelopathy Proceeds in Traveling Waves: Colicin-Immune Strain Aids Colicin-Sensitive Strain. Theoretical Population Biology, 2000, 57, 131-144.	1.1	45
244	Species Coexistence by Permanent Spatial Heterogeneity in a Lottery Model. Theoretical Population Biology, 2000, 57, 273-284.	1.1	57
245	Bias-Corrected Estimator and Confidence Intervals Based on the Monte Carlo Method. Japanese Journal of Biometrics, 2000, 20, 143-154.	0.0	4
246	Size-Dependent Mutability and Microsatellite Constraints. Molecular Biology and Evolution, 1999, 16, 960-966.	8.9	32
247	Crossover Accelerates Evolution in GAs with a Babel-like Fitness Landscape: Mathematical Analyses. Evolutionary Computation, 1999, 7, 275-310.	3.0	8
248	Sex Specific X Chromosome Expression Caused by Genomic Imprinting. Journal of Theoretical Biology, 199, 197, 487-495.	1.7	66
249	Good Parent and Good Genes Models of Handicap Evolution. Journal of Theoretical Biology, 1999, 200, 97-109.	1.7	173
250	Formation of Cone Mosaic of Zebrafish Retina. Journal of Theoretical Biology, 1999, 200, 231-244.	1.7	20
251	Evolution of contest competition and its effect on host–parasitoid dynamics. Evolutionary Ecology, 1998, 12, 855-870.	1.2	40
252	Allelopathy of bacteria in a lattice population: Competition between colicin-sensitive and colicin-producing strains. Evolutionary Ecology, 1998, 12, 785-802.	1.2	125

#	Article	IF	CITATIONS
253	On Rugged Shape of Skin Tumor (Basal Cell Carcinoma). Journal of Theoretical Biology, 1998, 194, 65-78.	1.7	9
254	Score-dependent Fertility Model for the Evolution of Cooperation in a Lattice. Journal of Theoretical Biology, 1998, 194, 101-124.	1.7	91
255	Cell-differentiation Rules that Generate Regular Mosaic Patterns: Modelling Motivated by Cone Mosaic Formation in Fish Retina. Journal of Theoretical Biology, 1998, 194, 575-586.	1.7	13
256	Noise-induced Regularity of Spatial Wave Patterns in SubalpineAbiesForests. Journal of Theoretical Biology, 1998, 195, 465-479.	1.7	14
257	Cell-cell adhesion in limb-formation, estimated from photographs of cell sorting experiments based on a spatial stochastic model. , 1998, 211, 204-214.		17
258	Extinction risk of natural populations and phenotypic traits evolution. Researches on Population Ecology, 1998, 40, 257-258.	0.9	0
259	Robustness of optimal mixed strategies. Journal of Mathematical Biology, 1998, 36, 485-496.	1.9	11
260	Space, time and statistics. Trends in Ecology and Evolution, 1998, 13, 294-295.	8.7	4
261	Extinction Rate of a Population under both Demographic and Environmental Stochasticity. Theoretical Population Biology, 1998, 53, 1-15.	1.1	70
262	Neural network for female mate preference, trained by a genetic algorithm. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 399-406.	4.0	14
263	Female Mate Preference to Maximize Paternal Care. II. Female Competition Leads to Monogamy. American Naturalist, 1998, 151, 367-382.	2.1	23
264	Runaway ornament diversity caused by Fisherian sexual selection. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5106-5111.	7.1	134
265	7 The Conflict Theory of Genomic Imprinting: How Much Can Be Explained?. Current Topics in Developmental Biology, 1998, 40, 255-293.	2.2	71
266	Probability of Clonal Identity: Inferring the Relative Success of Sexual Versus Clonal Reproduction from Spatial Genetic Patterns. Journal of Ecology, 1997, 85, 591.	4.0	57
267	Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 1997, 11, 41-65.	1.2	208
268	Competition and evolutionary stability of plants in a spatially structured habitat. Researches on Population Ecology, 1997, 39, 67-75.	0.9	21
269	Evolution of condition-dependent dispersal: A genetic-algorithm search for the ESS reaction norm. Researches on Population Ecology, 1997, 39, 127-137.	0.9	32
270	Optimal age-dependent sustainable harvesting of natural resource populations: Sustainability value. Researches on Population Ecology, 1997, 39, 139-148.	0.9	2

#	Article	IF	Citations
271	The Evolution of Cooperation in a Lattice-Structured Population. Journal of Theoretical Biology, 1997, 184, 65-81.	1.7	309
272	Sexual selection. Trends in Ecology and Evolution, 1996, 11, 53-58.	8.7	631
273	Phenological Pattern of Tree Regeneration in a Model for Forest Species Diversity. Theoretical Population Biology, 1996, 49, 90-117.	1.1	15
274	Pollinator Foraging Strategies in Mixed Floral Arrays: Density Effects and Floral Constancy. Theoretical Population Biology, 1996, 49, 232-263.	1.1	87
275	Optimal Level of Chemical Defense Decreasing with Leaf Age. Theoretical Population Biology, 1996, 50, 124-148.	1.1	53
276	Establishment Probability in Fluctuating Environments: A Branching Process Model. Theoretical Population Biology, 1996, 50, 254-280.	1.1	65
277	Female Mate Preference to Maximize Paternal Care: A Two-Step Game. American Naturalist, 1996, 147, 996-1027.	2.1	20
278	Analyses of spatial patterns and population processes of clonal plants. Researches on Population Ecology, 1996, 38, 153-164.	0.9	25
279	A Stochastic Model for Cell Sorting and Measuring Cell–Cell Adhesion. Journal of Theoretical Biology, 1996, 179, 129-146.	1.7	32
280	Forest Spatial Dynamics with Gap Expansion: Total Gap Area and Gap Size Distribution. Journal of Theoretical Biology, 1996, 180, 229-246.	1.7	95
281	The Evolution of Genomic Imprinting. Genetics, 1996, 144, 1283-1295.	2.9	86
282	A Generalized Model of Parasitoid, Venereal, and Vector-Based Transmission Processes. American Naturalist, 1995, 145, 661-675.	2.1	156
283	INFERRING THE RATES OF BRANCHING AND EXTINCTION FROM MOLECULAR PHYLOGENIES. Evolution; International Journal of Organic Evolution, 1995, 49, 694-704.	2.3	65
284	Coupling of fermentation and foraging strategies of herbivorous mammals. Journal of Theoretical Biology, 1995, 172, 1-11.	1.7	1
285	The timing of life history events. Journal of Theoretical Biology, 1995, 172, 33-42.	1.7	85
286	Why pollinators visit only a fraction of the open flowers on a plant: The plant's point of view. Journal of Evolutionary Biology, 1995, 8, 439-453.	1.7	47
287	Maintenance of forest species diversity and latitudinal gradient. Plant Ecology, 1995, 121, 127-134.	1.2	9
288	Continual change in mate preferences. Nature, 1995, 377, 420-422.	27.8	205

#	Article	IF	CITATIONS
289	Inferring the Rates of Branching and Extinction from Molecular Phylogenies. Evolution; International Journal of Organic Evolution, 1995, 49, 694.	2.3	57
290	Optimal Mixed Strategies in Stochastic Environments. Theoretical Population Biology, 1995, 47, 212-243.	1.1	133
291	Population Persistence and Spatially Limited Social Interaction. Theoretical Population Biology, 1995, 48, 65-91.	1.1	70
292	Forest gap dynamics with partially synchronized disturbances and patch age distribution. Ecological Modelling, 1995, 77, 257-271.	2.5	11
293	ESS emergence pattern of male butterflies in stochastic environments. Evolutionary Ecology, 1994, 8, 503-523.	1.2	38
294	Aggregation by Chemotactic Random Walk: Drifting Clusters and Chemotactic Friction. Journal of Theoretical Biology, 1994, 168, 259-267.	1.7	5
295	Lattice population dynamics for plants with dispersing seeds and Vegetative propagation. Researches on Population Ecology, 1994, 36, 237-249.	0.9	142
296	The Evolution of Mate Preferences for Multiple Sexual Ornaments. Evolution; International Journal of Organic Evolution, 1994, 48, 853.	2.3	134
297	THE EVOLUTION OF MATE PREFERENCES FOR MULTIPLE SEXUAL ORNAMENTS. Evolution; International Journal of Organic Evolution, 1994, 48, 853-867.	2.3	176
298	Evolutionarily stable seasonal timing of univoltine and bivoltine insects., 1994,, 69-89.		15
299	Overdispersed Molecular Evolution in Constant Environments. Journal of Theoretical Biology, 1993, 164, 373-393.	1.7	24
300	Relative entropy under mappings by stochastic matrices. Linear Algebra and Its Applications, 1993, 179, 211-235.	0.9	54
301	Modeling of Wave Regeneration in Subalpine Abies Forests: Population Dynamics with Spatial Structure. Ecology, 1993, 74, 1538-1550.	3.2	66
302	A lattice-structured model for beech forest dynamics: the effect of understory dwarf bamboo. Ecological Modelling, 1993, 66, 261-275.	2.5	6
303	Evolution of multiple sexual preferences by Fisher's runaway process of sexual selection. Proceedings of the Royal Society B: Biological Sciences, 1993, 253, 173-181.	2.6	138
303		2.6	138
	Proceedings of the Royal Society B: Biological Sciences, 1993, 253, 173-181.		

#	Article	IF	CITATIONS
307	Pessimistic plant: Optimal growth schedule in stochastic environments. Theoretical Population Biology, 1991, 40, 246-268.	1.1	35
308	The Evolution of Costly Mate Preferences I. Fisher and Biased Mutation. Evolution; International Journal of Organic Evolution, 1991, 45, 1422.	2.3	113
309	The Evolution of Costly Mate Preferences II. The 'Handicap' Principle. Evolution; International Journal of Organic Evolution, 1991, 45, 1431.	2.3	293
310	Free Fitness that Always Increases in Evolution Seibutsu Butsuri, 1991, 31, 27-32.	0.1	0
311	THE EVOLUTION OF COSTLY MATE PREFERENCES II. THE "HANDICAP―PRINCIPLE. Evolution; International Journal of Organic Evolution, 1991, 45, 1431-1442.	2.3	390
312	Asynchronous pupation of univoltine insects as evolutionarily stable phenology. Researches on Population Ecology, 1991, 33, 213-227.	0.9	13
313	Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. Journal of Theoretical Biology, 1991, 152, 143-158.	1.7	50
314	The Origin of Isogamous Sexual Differentiation. , 1991, , 155-181.		7
315	THE EVOLUTION OF COSTLY MATE PREFERENCES I. FISHER AND BIASED MUTATION. Evolution; International Journal of Organic Evolution, 1991, 45, 1422-1430.	2.3	252
316	Evolution of the Selfing Rate and Resource Allocation Models. Plant Species Biology, 1990, 5, 19-30.	1.0	25
317	Starlings exploiting patches: the effect of recent experience on foraging decisions. Animal Behaviour, 1990, 40, 625-640.	1.9	123
318	Optimal Growth Schedule of Terrestrial Plants. , 1990, , 335-349.		0
319	Aggregation in Model Ecosystems II. Approximate Aggregation. Mathematical Medicine and Biology, 1989, 6, 1-23.	1.2	135
320	A game model for the daily activity schedule of the male butterfly. Journal of Insect Behavior, 1989, 2, 589-608.	0.7	19
321	Optimal Growth Schedule of a Perennial Plant. American Naturalist, 1989, 133, 480-505.	2.1	161
322	Free fitness that always increases in evolution. Journal of Theoretical Biology, 1988, 135, 265-281.	1.7	108
323	Probability of population extinction accompanying a temporary decrease of population size. Researches on Population Ecology, 1988, 30, 145-164.	0.9	23
324	Evolution of the Number of Sexes. Evolution; International Journal of Organic Evolution, 1987, 41, 49.	2.3	26

#	Article	IF	CITATIONS
325	EVOLUTION OF THE NUMBER OF SEXES. Evolution; International Journal of Organic Evolution, 1987, 41, 49-65.	2.3	44
326	Aggregation in model ecosystems. I. Perfect aggregation. Ecological Modelling, 1987, 37, 287-302.	2.5	221
327	Optimal Recombination Rate in Fluctuating Environments. Genetics, 1987, 115, 377-388.	2.9	48
328	Dynamics of a metapopulation with space-limited subpopulations. Theoretical Population Biology, 1986, 29, 235-261.	1.1	141
329	Interspecific competition among metapopulations with space-limited subpopulations. Theoretical Population Biology, 1986, 30, 194-214.	1.1	7 5
330	Size distribution dynamics of plants with interaction by shading. Ecological Modelling, 1986, 33, 173-184.	2.5	25
331	Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. Journal of Mathematical Biology, 1986, 23, 187-204.	1.9	670
332	Tree height and crown shape, as results of competitive games. Journal of Theoretical Biology, 1985, 112, 279-297.	1.7	112
333	Evolution in a Metapopolation with Space-Limited Subpopulations. Mathematical Medicine and Biology, 1985, 2, 93-107.	1.2	5
334	Demographic Theory for an Open Marine Population with Space-Limited Recruitment. Ecology, 1985, 66, 54-67.	3.2	445
335	Duration of Female Availability and Its Effect on Butterfly Mating Systems. American Naturalist, 1985, 125, 673-678.	2.1	31
336	Adaptive strategy theory of behavior and growth Seibutsu Butsuri, 1985, 25, 50-56.	0.1	0
337	Niche Overlap of Parasitoids in Host-Parasitoid Systems: Its Consequence to Single Versus Multiple Introduction Controversy in Biological Control. Journal of Applied Ecology, 1984, 21, 115.	4.0	83
338	Branching-diffusion model for the formation of distributional patterns in populations. Journal of Mathematical Biology, 1984, 19, 109-124.	1.9	12
339	Shoot/root balance of plants: Optimal growth of a system with many vegetative organs. Theoretical Population Biology, 1984, 25, 78-105.	1.1	204
340	Theory of oviposition strategy of parasitoids. I. Effect of mortality and limited egg number. Theoretical Population Biology, 1984, 26, 205-227.	1.1	276
341	A Theory on the Temporal Pattern of Operational Sex Ratio: The Active-Inactive Model. Ecology, 1984, 65, 886-893.	3.2	20
342	Emergence patterns in male butterflies: A hypothesis and a test. Theoretical Population Biology, 1983, 23, 363-379.	1.1	158

#	Article	IF	Citations
343	Vertical Migration of Zooplankton: A Game Between Predator and Prey. American Naturalist, 1982, 120, 171-180.	2.1	154
344	Prey Distribution as a Factor Determining the Choice of Optimal Foraging Strategy. American Naturalist, 1981, 117, 710-723.	2.1	481
345	Role of sex ratio in the evolution of eusociality in haplodiploid social insects. Journal of Theoretical Biology, 1981, 93, 125-142.	1.7	22
346	Evolution of litter size. Researches on Population Ecology, 1981, 23, 344-359.	0.9	9
347	A sex ratio theory of gregarious parasitoids. Researches on Population Ecology, 1980, 22, 366-382.	0.9	132
348	A criterion of life history evolution based on density dependent selection. Journal of Theoretical Biology, 1980, 84, 545-566.	1.7	15
349	Optimal death strategy of animal populations. Journal of Theoretical Biology, 1978, 72, 611-626.	1.7	4
350	Roles of pollinator attraction and environmental fluctuation in inducing flowering synchrony. , 0, , $251\mbox{-}281.$		0
351	Evolution of synchronised and intermittent reproduction (masting) of trees: key role of regeneration dynamics., 0,, 191-223.		O