Su-Chang Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7509784/publications.pdf

Version: 2024-02-01

516710 610901 3,129 33 16 24 citations g-index h-index papers 33 33 33 4906 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Algorithmic robustness to preferred orientations in single particle analysis by CryoEM. Journal of Structural Biology, 2021, 213, 107695.	2.8	18
2	Structural and Biochemical Basis for Higher-Order Assembly between A20-Binding Inhibitor of NF-κB 1 (ABIN1) and M1-Linked Ubiquitins. Journal of Molecular Biology, 2021, 433, 167116.	4.2	2
3	Crystal structure reveals a unique ABIN-Ubs binding mode. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a22-a22.	0.1	O
4	SAXS and X-ray crystallographic studies of the assembly of the CARD promoter of the apoptosome. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a420-a420.	0.1	0
5	Structural Insights into UBAN-polyUbs assembly. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a61-a61.	0.1	O
6	Structural insights into the recognition between tri-ubiquitin and ubiquitin binding protein. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e26-e26.	0.1	0
7	The crystal structure of the CARD–CARD disc of the human apoptosome and its structural insights into the assembly of the death-domain fold. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e225-e225.	0.1	O
8	Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome. Structure, 2017, 25, 407-420.	3.3	13
9	Structural Insights into Linear Tri-ubiquitin Recognition by A20-Binding Inhibitor of NF-κB, ABIN-2. Structure, 2017, 25, 66-78.	3.3	17
10	The versatile roles of CARDs in regulating apoptosis, inflammation, and NF-l̂ºB signaling. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 174-195.	4.9	46
11	Tandem DEDs and CARDs suggest novel mechanisms of signaling complex assembly. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 124-135.	4.9	11
12	Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature, 2010, 465, 885-890.	27.8	911
13	Tumor Necrosis Factor Receptor-Associated Factors in Immune Receptor Signal Transduction. , 2010, , 339-345.		5
14	Recent advances in polyubiquitin chain recognition. F1000 Biology Reports, 2010, 2, 1-5.	4.0	17
15	E2 interaction and dimerization in the crystal structure of TRAF6. Nature Structural and Molecular Biology, 2009, 16, 658-666.	8.2	301
16	Structural Basis for Recognition of Diubiquitins by NEMO. Molecular Cell, 2009, 33, 602-615.	9.7	245
17	Molecular Basis for the Unique Deubiquitinating Activity of the NF-κB Inhibitor A20. Journal of Molecular Biology, 2008, 376, 526-540.	4.2	161
18	The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation. Annual Review of Immunology, 2007, 25, 561-586.	21.8	450

#	Article	IF	CITATIONS
19	Molecular Basis for the Unique Specificity of TRAF6. , 2007, 597, 122-130.		65
20	TAK1-dependent Signaling Requires Functional Interaction with TAB2/TAB3. Journal of Biological Chemistry, 2007, 282, 3918-3928.	3.4	117
21	Smac Mimetics and TNFα: A Dangerous Liaison?. Cell, 2007, 131, 655-658.	28.9	126
22	Crystal Structure of the BIR1 Domain of XIAP in Two Crystal Forms. Journal of Molecular Biology, 2007, 372, 847-854.	4.2	28
23	XIAP Induces NF-κB Activation via the BIR1/TAB1 Interaction and BIR1 Dimerization. Molecular Cell, 2007, 26, 689-702.	9.7	250
24	Caspase-9 Holoenzyme Is a Specific and Optimal Procaspase-3 Processing Machine. Molecular Cell, 2006, 22, 259-268.	9.7	80
25	Inhibitory effects of nontoxic protein volvatoxin A1 on pore-forming cardiotoxic protein volvatoxin A2 by interaction with amphipathic alpha-helix. FEBS Journal, 2006, 273, 3160-3171.	4.7	4
26	Substrate Specificities of Escherichia coli Thioesterase I/Protease I/Lysophospholipase L1 Are Governed by Its Switch Loop Movement. Biochemistry, 2005, 44, 1971-1979.	2.5	28
27	Crystal Structures and Electron Micrographs of Fungal Volvatoxin A2. Journal of Molecular Biology, 2004, 343, 477-491.	4.2	32
28	Crystal Structure of Escherichia coli Thioesterase I/Protease I/Lysophospholipase L1: Consensus Sequence Blocks Constitute the Catalytic Center of SGNH-hydrolases through a Conserved Hydrogen Bond Network. Journal of Molecular Biology, 2003, 330, 539-551.	4.2	108
29	Crystallization of agglutinin from the seeds of Abrus precatorius. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 898-899.	2.5	9
30	Primary Structure and Function Analysis of the Abrus precatorius Agglutinin A Chain by Site-directed Mutagenesis. Journal of Biological Chemistry, 2000, 275, 1897-1901.	3 . 4	39
31	Crystallization and preliminary X-ray analysis of volvatoxin A2 fromVolvariella volvacea. , 1996, 24, 141-142.		8
32	Crystallization and preliminary X-ray analysis of chicken-liver glutathione S-transferase CL 3-3. Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 601-603.	2 . 5	0
33	Occurrence of plasmids and tetracycline resistance among Campylobacter jejuni and Campylobacter coli isolated from whole market chickens and clinical samples. International Journal of Food Microbiology, 1994, 24, 161-170.	4.7	38