Walter Glen Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7508851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Akt acts as a switch for GPCR transactivation of the TGFâ $\in \hat{I}^2$ receptor type 1. FEBS Journal, 2022, 289, 2642-2656.	4.7	6
2	Stimulation of the four isoforms of receptor tyrosine kinase ErbB4, but not ErbB1, confers cardiomyocyte hypertrophy. Journal of Cellular Physiology, 2021, 236, 8160-8170.	4.1	4
3	Complex interactions between the angiotensin II type 1 receptor, the epidermal growth factor receptor and TRIO-dependent signaling partners. Biochemical Pharmacology, 2021, 188, 114521.	4.4	2
4	Type I Diabetes Mellitus Increases the Cardiovascular Complications of Influenza Virus Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 714440.	3.9	3
5	Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30476-30487.	7.1	29
6	A Bitter Taste in Your Heart. Frontiers in Physiology, 2020, 11, 431.	2.8	31
7	A High-Fat Diet Increases Influenza A Virus-Associated Cardiovascular Damage. Journal of Infectious Diseases, 2020, 222, 820-831.	4.0	21
8	Mutations in the NPxxY motif stabilize pharmacologically distinct conformational states of the α _{1B} - and β ₂ -adrenoceptors. Science Signaling, 2019, 12, .	3.6	14
9	BRET-based assay to monitor EGFR transactivation by the AT1R reveals Gq/11 protein-independent activation and AT1R-EGFR complexes. Biochemical Pharmacology, 2018, 158, 232-242.	4.4	19
10	CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis. Journal of Molecular Histology, 2017, 48, 53-61.	2.2	10
11	Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Research in Cardiology, 2017, 112, 24.	5.9	15
12	Transactivation of the epidermal growth factor receptor in responses to myocardial stress and cardioprotection. International Journal of Biochemistry and Cell Biology, 2017, 83, 97-110.	2.8	24
13	Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8372-E8381.	7.1	361
14	Gaq proteins: molecular pharmacology and therapeutic potential. Cellular and Molecular Life Sciences, 2017, 74, 1379-1390.	5.4	43
15	Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Scientific Reports, 2016, 6, 19832.	3.3	6
16	Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annual Review of Pharmacology and Toxicology, 2016, 56, 627-653.	9.4	125
17	Taste and Hypertension in Humans: Targeting Cardiovascular Disease. Current Pharmaceutical Design, 2016, 22, 2290-2305.	1.9	15
18	Helix 8 of the angiotensin- II type 1A receptor interacts with phosphatidylinositol phosphates and modulates membrane insertion. Scientific Reports, 2015, 5, 9972.	3.3	12

#	Article	IF	CITATIONS
19	Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1009-1027.	3.0	23
20	Variability in Human Bitter Taste Sensitivity to Chemically Diverse Compounds Can Be Accounted for by Differential TAS2R Activation. Chemical Senses, 2015, 40, 427-435.	2.0	38
21	Extracellular Surface Residues of the <i>α</i> _{1B} -Adrenoceptor Critical for G Protein–Coupled Receptor Function. Molecular Pharmacology, 2015, 87, 121-129.	2.3	9
22	Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2. Frontiers in Pharmacology, 2015, 6, 5.	3.5	17
23	G protein-coupled receptors in cardiac biology: old and new receptors. Biophysical Reviews, 2015, 7, 77-89.	3.2	18
24	International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli. Pharmacological Reviews, 2015, 67, 754-819.	16.0	245
25	Bitter taste receptor agonists elicit Gâ€proteinâ€dependent negative inotropy in the murine heart. FASEB Journal, 2014, 28, 4497-4508.	0.5	72
26	Extrasensory perception: Odorant and taste receptors beyond the nose and mouth. , 2014, 142, 41-61.		98
27	A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation. Journal of Cell Science, 2013, 126, 5377-90.	2.0	30
28	Unravelling the molecular complexity of <scp>GPCR</scp> â€mediated <scp>EGFR</scp> transactivation using functional genomics approaches. FEBS Journal, 2013, 280, 5258-5268.	4.7	53
29	PAQR3 Modulates Insulin Signaling by Shunting Phosphoinositide 3-Kinase p110α to the Golgi Apparatus. Diabetes, 2013, 62, 444-456.	0.6	52
30	Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart. PLoS ONE, 2013, 8, e64579.	2.5	121
31	PAQR10 and PAQR11 mediate Ras signaling in the Golgi apparatus. Cell Research, 2012, 22, 661-676.	12.0	37
32	Angiotensin Type 1A Receptors in C1 Neurons of the Rostral Ventrolateral Medulla Modulate the Pressor Response to Aversive Stress. Journal of Neuroscience, 2012, 32, 2051-2061.	3.6	41
33	Angiotensin 1A receptors transfected into caudal ventrolateral medulla inhibit baroreflex gain and stress responses. Cardiovascular Research, 2012, 96, 330-339.	3.8	10
34	Real-Time Measurement of F-Actin Remodelling during Exocytosis Using Lifeact-EGFP Transgenic Animals. PLoS ONE, 2012, 7, e39815.	2.5	22
35	Silencing Relaxin-3 in Nucleus Incertus of Adult Rodents: A Viral Vector-based Approach to Investigate Neuropeptide Function. PLoS ONE, 2012, 7, e42300.	2.5	20
36	Efferent projections of C3 adrenergic neurons in the rat central nervous system. Journal of Comparative Neurology, 2012, 520, 2352-2368.	1.6	24

#	Article	IF	CITATIONS
37	Regulation of angiotensinogen by angiotensin II in mouse primary astrocyte cultures. Journal of Neurochemistry, 2011, 119, 18-26.	3.9	25
38	Heteromerization of angiotensin receptors changes trafficking and arrestin recruitment profiles. Cellular Signalling, 2011, 23, 1767-1776.	3.6	63
39	A Single β-Amino Acid Substitution to Angiotensin II Confers AT ₂ Receptor Selectivity and Vascular Function. Hypertension, 2011, 57, 570-576.	2.7	51
40	Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clinical Science, 2011, 121, 297-303.	4.3	241
41	Determination of the Exact Molecular Requirements for Type 1 Angiotensin Receptor Epidermal Growth Factor Receptor Transactivation and Cardiomyocyte Hypertrophy. Hypertension, 2011, 57, 973-980.	2.7	27
42	The renin–angiotensin system and cancer: old dog, new tricks. Nature Reviews Cancer, 2010, 10, 745-759.	28.4	438
43	Expression of Angiotensin Type 1A Receptors in C1 Neurons Restores the Sympathoexcitation to Angiotensin in the Rostral Ventrolateral Medulla of Angiotensin Type 1A Knockout Mice. Hypertension, 2010, 56, 143-150.	2.7	34
44	Ligand-Supported Purification of the Urotensin-II Receptor. Molecular Pharmacology, 2010, 78, 639-647.	2.3	5
45	Glucocorticoids Suppress Growth in Neonatal Cardiomyocytes Co-Expressing AT ₂ and AT ₁ Angiotensin Receptors. Neonatology, 2010, 97, 257-265.	2.0	6
46	Differential Participation of Angiotensin II Type 1 and 2 Receptors in the Regulation of Cardiac Cell Death Triggered by Angiotensin II. American Journal of Hypertension, 2009, 22, 569-576.	2.0	15
47	High-Density Lipoprotein Modulates Glucose Metabolism in Patients With Type 2 Diabetes Mellitus. Circulation, 2009, 119, 2103-2111.	1.6	363
48	Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and a lack of β-arrestin recruitment. American Journal of Physiology - Cell Physiology, 2009, 296, C1058-C1066.	4.6	44
49	Heritable pathologic cardiac hypertrophy in adulthood is preceded by neonatal cardiac growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R672-R680.	1.8	31
50	Angiotensin II Type 2 Receptor Antagonizes Angiotensin II Type 1 Receptor–Mediated Cardiomyocyte Autophagy. Hypertension, 2009, 53, 1032-1040.	2.7	100
51	Development and Optimization of MicroRNA against Relaxinâ€3. Annals of the New York Academy of Sciences, 2009, 1160, 261-264.	3.8	5
52	Role of helix 8 in G protein-coupled receptors based on structure–function studies on the type 1 angiotensin receptor. Molecular and Cellular Endocrinology, 2009, 302, 118-127.	3.2	54
53	Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival. Molecular Immunology, 2009, 47, 340-347.	2.2	19
54	Endothelin-1 activates ETA receptors on human vascular smooth muscle cells to yield proteoglycans with increased binding to LDL. Atherosclerosis, 2009, 205, 451-457.	0.8	29

#	Article	IF	CITATIONS
55	Immunoprecipitation and Phosphorylation of G Protein-Coupled Receptors. Methods in Molecular Biology, 2009, 552, 359-371.	0.9	2
56	The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Frontiers in Bioscience - Landmark, 2009, Volume, 958.	3.0	99
57	Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Molecular and Cellular Endocrinology, 2008, 280, 30-38.	3.2	48
58	Phospholipase C/Protein Kinase C Pathway Mediates Angiotensin II-Dependent Apoptosis in Neonatal Rat Cardiac Fibroblasts Expressing AT1 Receptor. Journal of Cardiovascular Pharmacology, 2008, 52, 184-190.	1.9	27
59	UBF levels determine the number of active ribosomal RNA genes in mammals. Journal of Cell Biology, 2008, 183, 1259-1274.	5.2	171
60	Type 1 angiotensin receptor pharmacology: Signaling beyond G proteins. , 2007, 113, 210-226.		76
61	Is helix VIII of G proteinâ€coupled receptors (GPCRs) a lipidâ€activated signalling sensor?. FASEB Journal, 2007, 21, A614.	0.5	0
62	Effect of Dominant-Negative Epidermal Growth Factor Receptors on Cardiomyocyte Hypertrophy. Journal of Receptor and Signal Transduction Research, 2006, 26, 659-677.	2.5	14
63	Baroreceptor reflex stimulation does not induce cytomegalovirus promoter-driven transgene expression in the ventrolateral medulla in vivo. Autonomic Neuroscience: Basic and Clinical, 2006, 126-127, 150-155.	2.8	0
64	Fine mapping of Lvm1: a quantitative trait locus controlling heart size independently of blood pressure. Pulmonary Pharmacology and Therapeutics, 2006, 19, 70-73.	2.6	5
65	Tackling the EGFR in pathological tissue remodelling. Pulmonary Pharmacology and Therapeutics, 2006, 19, 74-78.	2.6	25
66	CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine, 2006, 12, 541-548.	30.7	250
67	Protein Kinase C Regulates the Cell Surface Activity of Endothelin-Converting Enzyme-1. International Journal of Peptide Research and Therapeutics, 2006, 12, 291-295.	1.9	17
68	Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein–protein interactions in live cells. Cellular Signalling, 2006, 18, 1664-1670.	3.6	98
69	Interleukin-6 Increases Insulin-Stimulated Glucose Disposal in Humans and Glucose Uptake and Fatty Acid Oxidation In Vitro via AMP-Activated Protein Kinase. Diabetes, 2006, 55, 2688-2697.	0.6	699
70	Expression of Constitutively Active Angiotensin Receptors in the Rostral Ventrolateral Medulla Increases Blood Pressure. Hypertension, 2006, 47, 1054-1061.	2.7	57
71	Role of Angiotensin II Type 1A Receptor Phosphorylation, Phospholipase D, and Extracellular Calcium in Isoform-specific Protein Kinase C Membrane Translocation Responses. Journal of Biological Chemistry, 2006, 281, 26340-26349.	3.4	15
72	Evaluation of the Membrane-binding Properties of the Proximal Region of the Angiotensin II Receptor (AT1A) Carboxyl Terminus by Surface Plasmon Resonance. Analytical Sciences, 2005, 21, 171-174.	1.6	19

#	Article	IF	CITATIONS
73	G Protein Coupling and Second Messenger Generation Are Indispensable for Metalloprotease-dependent, Heparin-binding Epidermal Growth Factor Shedding through Angiotensin II Type-1 Receptor. Journal of Biological Chemistry, 2005, 280, 26592-26599.	3.4	115
74	Double Trouble for Type 1 Angiotensin Receptors in Atherosclerosis. New England Journal of Medicine, 2005, 352, 506-508.	27.0	8
75	Effect of Intrauterine Growth Restriction on the Number of Cardiomyocytes in Rat Hearts. Pediatric Research, 2005, 57, 796-800.	2.3	151
76	Helix I of β-Arrestin Is Involved in Postendocytic Trafficking but Is Not Required for Membrane Translocation, Receptor Binding, and Internalization. Molecular Pharmacology, 2005, 67, 375-382.	2.3	10
77	Dual Pathways for Nuclear Factor κB Activation by Angiotensin II in Vascular Smooth Muscle. Circulation Research, 2005, 97, 975-982.	4.5	58
78	The Angiotensin II Type 2 Receptor Causes Constitutive Growth of Cardiomyocytes and Does Not Antagonize Angiotensin II Type 1 Receptor–Mediated Hypertrophy. Hypertension, 2005, 46, 1347-1354.	2.7	123
79	The Angiotensin II Type 2 Receptor Causes Constitutive Growth of Cardiomyocytes and Does Not Antagonize Angiotensin II Type 1 Receptor–Mediated Hypertrophy. Hypertension, 2005, 46, 1347-1354.	2.7	4
80	Urotensin II Promotes Hypertrophy of Cardiac Myocytes via Mitogen-Activated Protein Kinases. Molecular Endocrinology, 2004, 18, 2344-2354.	3.7	84
81	What?s new in the renin-angiotensin system?. Cellular and Molecular Life Sciences, 2004, 61, 2695-2703.	5.4	37
82	What?s new in the renin-angiotensin system?. Cellular and Molecular Life Sciences, 2004, 61, 2687-2694.	5.4	14
83	p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. Journal of the American College of Cardiology, 2004, 44, 1679-1689.	2.8	157
84	Urotensin II: the old kid in town. Trends in Endocrinology and Metabolism, 2004, 15, 175-182.	7.1	64
85	Cardiovascular role of urotensin II: effect of chronic infusion in the rat. Peptides, 2004, 25, 1783-1788.	2.4	34
86	Agonist-dependent internalization of the angiotensin II type one receptor (AT1): role of C-terminus phosphorylation in recruitment of β-arrestins. Regulatory Peptides, 2004, 120, 141-148.	1.9	20
87	Angiotensinll mediates cardiomyocyte hypertrophic growth pathways via MMP-dependent HB-EGF liberation. International Journal of Peptide Research and Therapeutics, 2003, 10, 431-435.	0.1	1
88	Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. Journal of Peptide Science, 2003, 9, 77-89.	1.4	52
89	AngiotensinII mediates cardiomyocyte hypertrophic growth pathways via MMP-dependent HB-EGF liberation. International Journal of Peptide Research and Therapeutics, 2003, 10, 431-435.	1.9	0
90	Adrenomedullin inhibits angiotensin AT1A receptor expression and function in cardiac fibroblasts. Regulatory Peptides, 2003, 112, 131-137.	1.9	15

#	Article	IF	CITATIONS
91	Angiotensin receptors: form and function and distribution. International Journal of Biochemistry and Cell Biology, 2003, 35, 774-779.	2.8	82
92	Arresting angiotensin type 1 receptors. Trends in Endocrinology and Metabolism, 2003, 14, 130-136.	7.1	36
93	Direct Actions of Urotensin II on the Heart. Circulation Research, 2003, 93, 246-253.	4.5	196
94	Caveolin Interacts with the Angiotensin II Type 1 Receptor during Exocytic Transport but Not at the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 23738-23746.	3.4	110
95	Emerging Role of the Urotensin II System in Cardiovascular Disease. Cardiology, 2003, 3, 153-158.	0.3	2
96	Side-Chain Substitutions within Angiotensin II Reveal Different Requirements for Signaling, Internalization, and Phosphorylation of Type 1A Angiotensin Receptors. Molecular Pharmacology, 2002, 61, 768-777.	2.3	227
97	Adenoviral-Directed Expression of the Type 1A Angiotensin Receptor Promotes Cardiomyocyte Hypertrophy via Transactivation of the Epidermal Growth Factor Receptor. Circulation Research, 2002, 90, 135-142.	4.5	159
98	Electrostatic and Hydrophobic Forces Tether the Proximal Region of the Angiotensin II Receptor (AT1A) Carboxyl Terminus to Anionic Lipidsâ€. Biochemistry, 2002, 41, 7830-7840.	2.5	42
99	Casein Kinase II Sites in the Intracellular C-terminal Domain of the Thyrotropin-releasing Hormone Receptor and Chimeric Conadotropin-releasing Hormone Receptors Contribute to β-Arrestin-dependent Internalization. Journal of Biological Chemistry, 2001, 276, 18066-18074.	3.4	63
100	Angiotensin II enhances noradrenaline release from sympathetic nerves of the rat prostate via a novel angiotensin receptor: implications for the pathophysiology of benign prostatic hyperplasia. Journal of Endocrinology, 2001, 171, 97-108.	2.6	43
101	Association of β-Arrestin 1 with the Type 1A Angiotensin II Receptor Involves Phosphorylation of the Receptor Carboxyl Terminus and Correlates with Receptor Internalization. Molecular Endocrinology, 2001, 15, 1706-1719.	3.7	74
102	Association of Â-Arrestin 1 with the Type 1A Angiotensin II Receptor Involves Phosphorylation of the Receptor Carboxyl Terminus and Correlates with Receptor Internalization. Molecular Endocrinology, 2001, 15, 1706-1719.	3.7	58
103	Tethering of the Proximal Region of the Angiotensin II Receptor (AT1A) C-Terminus to the Cell Membrane. , 2001, , 293-294.		0
104	Agonist-induced Phosphorylation of the Angiotensin II (AT1A) Receptor Requires Generation of a Conformation That Is Distinct from the Inositol Phosphate-signaling State. Journal of Biological Chemistry, 2000, 275, 2893-2900.	3.4	95
105	Regulation of angiotensin II type 1 (AT1) receptor function. Regulatory Peptides, 1999, 79, 9-23.	1.9	90
106	Identification of a Ca2+/calmodulin-binding domain within the carboxyl-terminus of the angiotensin II (AT1A) receptor. FEBS Letters, 1999, 455, 367-371.	2.8	28
107	Identification of protein kinase C phosphorylation sites in the angiotensin II (AT1A) receptor. Biochemical Journal, 1999, 343, 637-644.	3.7	31
108	Identification of protein kinase C phosphorylation sites in the angiotensin II (AT1A) receptor. Biochemical Journal, 1999, 343, 637.	3.7	12

#	Article	IF	CITATIONS
109	Phosphorylation of the Angiotensin II (AT1A) Receptor Carboxyl Terminus: A Role in Receptor Endocytosis. Molecular Endocrinology, 1998, 12, 1513-1524.	3.7	81
110	Phosphorylation of the Angiotensin II (AT1A) Receptor Carboxyl Terminus: A Role in Receptor Endocytosis. Molecular Endocrinology, 1998, 12, 1513-1524.	3.7	31
111	Evidence against a role for protein kinase C in the regulation of the angiotensin II (AT1A) receptor. European Journal of Pharmacology, 1996, 295, 119-122.	3.5	7
112	Activation of the STAT Pathway by Angiotensin II in T3CHO/AT1A Cells. Journal of Biological Chemistry, 1995, 270, 19059-19065.	3.4	68
113	Stable expression of a functional rat angiotensin II (AT1A) receptor in CHO-K1 cells: Rapid desensitization by angiotensin II. Molecular and Cellular Biochemistry, 1995, 146, 79-89.	3.1	46
114	Angiotensin II Receptor Endocytosis Involves Two Distinct Regions of the Cytoplasmic Tail. Journal of Biological Chemistry, 1995, 270, 22153-22159.	3.4	106
115	Stable Expression of a Truncated AT1A Receptor in CHO-K1 Cells. Journal of Biological Chemistry, 1995, 270, 207-213.	3.4	121
116	Molecular forms of rat angiotensinogen in plasma and brain: identification by isoelectric focusing and immunoblot analysis. Regulatory Peptides, 1995, 59, 31-41.	1.9	3
117	A Novel Inhibitory Role for Glucocorticoids in the Secretion of Angiotensinogen by C6 Glioma Cells. Journal of Neurochemistry, 1994, 62, 1296-1301.	3.9	7
118	Angiotensinogen Secretion by Single Rat Pituitary Cells: Detection by a Reverse Haemolytic Plaque Assay and Cell Identification by Immunocytochemistry. Neuroendocrinology, 1992, 55, 308-316.	2.5	24
119	Angiotensinogen is secreted by pure rat neuronal cell cultures. Brain Research, 1992, 588, 191-200.	2.2	48
120	Immunccytochemical Localization of Angiotensinogen in Rat Brain: Dependence of Neuronal Immunoreactivity on Method of Tissue Processing. Journal of Neuroendocrinology, 1991, 3, 653-660.	2.6	18
121	Oxytocin Receptors in the Mammary Gland and Reproductive Tract of a Marsupial, the Brushtail Possum (Trichosurus Vulpecula)1. Biology of Reproduction, 1991, 45, 673-679.	2.7	18
122	Effect of intra-ovarian infusion of oxytocin on plasma progesterone concentrations in pregnant ewes. Reproduction, 1991, 92, 453-460.	2.6	4
123	Immunocytochemical Localization of Angiotensinogen and Angiotensin II in the Rat Pituitary. Journal of Neuroendocrinology, 1990, 2, 297-304.	2.6	9
124	Angiotensin receptors in an Australian marsupial, the brushtail possum Trichosurus vulpecula. General and Comparative Endocrinology, 1990, 77, 116-126.	1.8	3
125	The immunocytochemical localization of angiotensinogen in the rat ovary. Cell and Tissue Research, 1990, 261, 367-373.	2.9	36
126	Uterine oxytocin receptors in an australian marsupial, the brushtail possum, Trichosurus vulpecula. Comparative Biochemistry and Physiology A, Comparative Physiology, 1990, 95, 135-138.	0.6	6

#	Article	IF	CITATIONS
127	Oxytocin receptors in the ovine corpus luteum. Journal of Endocrinology, 1989, 121, 117-123.	2.6	38
128	Immunocytochemical localization of angiotensinogen in the rat brain. Neuroscience, 1988, 25, 319-341.	2.3	98
129	Purification of Rat Angiotensinogen. Preparative Biochemistry and Biotechnology, 1986, 16, 45-59.	0.5	11
130	Liver angiotensin II receptors in the rat: binding properties and regulation by dietary Na+ and angiotensin II. Journal of Endocrinology, 1985, 106, 103-111.	2.6	17
131	Regulation of rat brain angiotensin II (AII) receptors by intravenous AII and low dietary Na+. Brain Research, 1985, 345, 54-61.	2.2	22