List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7508838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering the third wave of biocatalysis. Nature, 2012, 485, 185-194.	27.8	2,099
2	Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie - International Edition, 2011, 50, 3854-3871.	13.8	871
3	Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiology Reviews, 2002, 26, 73-81.	8.6	742
4	Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angewandte Chemie - International Edition, 2021, 60, 88-119.	13.8	711
5	Catalytic Promiscuity in Biocatalysis: Using Old Enzymes to Form New Bonds and Follow New Pathways. Angewandte Chemie - International Edition, 2004, 43, 6032-6040.	13.8	525
6	Immobilizing Enzymes: How to Create More Suitable Biocatalysts. Angewandte Chemie - International Edition, 2003, 42, 3336-3337.	13.8	487
7	Opportunities and challenges for combining chemo- and biocatalysis. Nature Catalysis, 2018, 1, 12-22.	34.4	479
8	Improved biocatalysts by directed evolution and rational protein design. Current Opinion in Chemical Biology, 2001, 5, 137-143.	6.1	410
9	Biocatalytic Routes to Optically Active Amines. ChemCatChem, 2009, 1, 42-51.	3.7	351
10	Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chemical Biology, 2010, 6, 807-813.	8.0	345
11	Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology, 2003, 33, 97-103.	3.2	339
12	Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Applied Microbiology and Biotechnology, 2006, 71, 13-22.	3.6	335
13	Cascade catalysis – strategies and challenges en route to preparative synthetic biology. Chemical Communications, 2015, 51, 5798-5811.	4.1	287
14	Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 2019, 10, 1717.	12.8	265
15	Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis, 2020, 3, 867-871.	34.4	233
16	Optimizing lipases and related enzymes for efficient application. Trends in Biotechnology, 2002, 20, 433-437.	9.3	222
17	Lipase-catalyzed syntheses of monoacylglycerols. Enzyme and Microbial Technology, 1995, 17, 578-586.	3.2	216
18	Finding better protein engineering strategies. Nature Chemical Biology, 2009, 5, 526-529.	8.0	202

#	Article	IF	CITATIONS
19	Efficient Asymmetric Synthesis of Chiral Amines by Combining Transaminase and Pyruvate Decarboxylase. ChemBioChem, 2008, 9, 363-365.	2.6	195
20	Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnology Advances, 2015, 33, 566-604.	11.7	193
21	Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines. Nature Chemistry, 2016, 8, 1076-1082.	13.6	193
22	Multistep Enzymatic Synthesis of Longâ€Chain α,ï‰â€Dicarboxylic and ï‰â€Hydroxycarboxylic Acids from Renewable Fatty Acids and Plant Oils. Angewandte Chemie - International Edition, 2013, 52, 2534-2537.	13.8	186
23	An Enzyme Cascade Synthesis of ε aprolactone and its Oligomers. Angewandte Chemie - International Edition, 2015, 54, 2784-2787.	13.8	175
24	Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049.	38.1	175
25	Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2003, 22, 21-27.	1.8	174
26	A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry - A European Journal, 2017, 23, 12040-12063.	3.3	171
27	Strategies for the discovery and engineering of enzymes for biocatalysis. Current Opinion in Chemical Biology, 2013, 17, 215-220.	6.1	169
28	Directed Evolution Empowered Redesign of Natural Proteins for the Sustainable Production of Chemicals and Pharmaceuticals. Angewandte Chemie - International Edition, 2019, 58, 36-40.	13.8	169
29	Rapid and Sensitive Kinetic Assay for Characterization of ω-Transaminases. Analytical Chemistry, 2009, 81, 8244-8248.	6.5	160
30	Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends in Biotechnology, 2014, 32, 312-320.	9.3	152
31	Lipase-Catalyzed Glucose Fatty Acid Ester Synthesis in Ionic Liquids. Organic Letters, 2005, 7, 3097-3098.	4.6	143
32	Complete Inversion of Enantioselectivity towards Acetylated Tertiary Alcohols by a Double Mutant of a <i>Bacillus Subtilis</i> Esterase. Angewandte Chemie - International Edition, 2008, 47, 1508-1511.	13.8	143
33	Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresource Technology, 2012, 115, 164-171.	9.6	142
34	Activity of Lipases and Esterases towards Tertiary Alcohols: Insights into Structure���Function Relationships. Angewandte Chemie - International Edition, 2002, 41, 3211-3213.	13.8	139
35	Methods to increase enantioselectivity of lipases and esterases. Current Opinion in Biotechnology, 2002, 13, 543-547.	6.6	131
36	Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. , 1998, 58, 554-559.		129

#	Article	IF	CITATIONS
37	Discovery, application and protein engineering of Baeyer–Villiger monooxygenases for organic synthesis. Organic and Biomolecular Chemistry, 2012, 10, 6249.	2.8	128
38	The α/βâ€Hydrolase Fold 3DM Database (ABHDB) as a Tool for Protein Engineering. ChemBioChem, 2010, 11, 1635-1643.	2.6	126
39	Enzymatic Asymmetric Synthesis of Enantiomerically Pure Aliphatic, Aromatic and Arylaliphatic Amines with (<i>R</i>)â€Selective Amine Transaminases. Advanced Synthesis and Catalysis, 2011, 353, 2439-2445.	4.3	124
40	Enzymatic Degradation of (Ligno)cellulose. Angewandte Chemie - International Edition, 2014, 53, 10876-10893.	13.8	123
41	Lipase-Catalyzed Solid Phase Synthesis of Sugar Fatty Acid Esters. Biocatalysis and Biotransformation, 1996, 14, 269-283.	2.0	120
42	Natural Diversity to Guide Focused Directed Evolution. ChemBioChem, 2010, 11, 1861-1866.	2.6	120
43	Thermostabilization of an esterase by alignment-guided focussed directed evolution. Protein Engineering, Design and Selection, 2010, 23, 903-909.	2.1	117
44	3DM: Systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins: Structure, Function and Bioinformatics, 2010, 78, NA-NA.	2.6	115
45	Enzymatic Synthesis of Optically Active Tertiary Alcohols: Expanding the Biocatalysis Toolbox. ChemBioChem, 2008, 9, 491-498.	2.6	114
46	Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angewandte Chemie - International Edition, 2021, 60, 20144-20165.	13.8	114
47	Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH. Journal of Molecular Catalysis B: Enzymatic, 2005, 36, 40-42.	1.8	113
48	Engineering Enzyme Stability and Resistance to an Organic Cosolvent by Modification of Residues in the Access Tunnel. Angewandte Chemie - International Edition, 2013, 52, 1959-1963.	13.8	113
49	Protein engineering of microbial enzymes. Current Opinion in Microbiology, 2010, 13, 274-282.	5.1	112
50	Feeding on plastic. Science, 2016, 351, 1154-1155.	12.6	112
51	Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 279-285.	1.8	109
52	The application of biotechnological methods for the synthesis of biodiesel. European Journal of Lipid Science and Technology, 2009, 111, 800-813.	1.5	108
53	Microbial Synthesis of Medium hain α,ï‰â€Dicarboxylic Acids and ï‰â€Aminocarboxylic Acids from Renewal Longâ€Chain Fatty Acids. Advanced Synthesis and Catalysis, 2014, 356, 1782-1788.	ole 4.3	108
54	The fourth wave of biocatalysis is approaching. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170063.	3.4	108

#	Article	IF	CITATIONS
55	A Molecular Mechanism of Enantiorecognition of Tertiary Alcohols by Carboxylesterases. ChemBioChem, 2003, 4, 485-493.	2.6	107
56	Thermophilic wholeâ€cell degradation of polyethylene terephthalate using engineered <i>Clostridium thermocellum</i> . Microbial Biotechnology, 2021, 14, 374-385.	4.2	106
57	High-throughput assays for lipases and esterases. New Biotechnology, 2005, 22, 51-56.	2.7	105
58	Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 201-211.	1.8	104
59	Mechanism-Based Design of Efficient PET Hydrolases. ACS Catalysis, 2022, 12, 3382-3396.	11.2	104
60	A High-Throughput-Screening Method for the Identification of Active and Enantioselective Hydrolases. Angewandte Chemie - International Edition, 2001, 40, 4201-4204.	13.8	101
61	Screening of Commercial Hydrolases for the Degradation of Ochratoxin A. Journal of Agricultural and Food Chemistry, 2000, 48, 5736-5739.	5.2	99
62	Directed Evolution of an Esterase from Pseudomonas fluorescens. Random Mutagenesis by Error-Prone PCR or a Mutator Strain and Identification of Mutants Showing Enhanced Enantioselectivity by a Resorufin-Based Fluorescence Assay. Biological Chemistry, 1999, 380, 1029-33.	2.5	97
63	Lipase-catalyzed alcoholysis of vegetable oils. European Journal of Lipid Science and Technology, 2003, 105, 656-660.	1.5	97
64	A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nature Chemical Biology, 2019, 15, 803-812.	8.0	97
65	Mutations in Distant Residues Moderately Increase the Enantioselectivity of Pseudomonas fluorescens Esterase towards Methyl 3Bromo-2-methylpropanoate and Ethyl 3Phenylbutyrate. Chemistry - A European Journal, 2003, 9, 1933-1939.	3.3	96
66	Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the Presence of the Ionic Liquids [BMIM][BF4] and [BMIM][PF6] and Organic Solvents. Biotechnology Letters, 2006, 28, 465-469.	2.2	95
67	Review Article Enzymes in Non-Conventional Phases. Biocatalysis and Biotransformation, 1995, 13, 1-42.	2.0	93
68	Protein Engineering of α/βâ€Hydrolase Fold Enzymes. ChemBioChem, 2011, 12, 1508-1517.	2.6	92
69	Engineering the Active Site of the Amine Transaminase from <i>Vibrio fluvialis</i> for the Asymmetric Synthesis of Aryl–Alkyl Amines and Amino Alcohols. ChemCatChem, 2015, 7, 757-760.	3.7	91
70	Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron: Asymmetry, 2002, 13, 2693-2696.	1.8	89
71	Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nature Communications, 2019, 10, 5581.	12.8	89
72	Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angewandte Chemie, 2021, 133, 89-123.	2.0	89

#	Article	IF	CITATIONS
73	Lipase-catalyzed synthesis of vitamin C fatty acid esters. Biotechnology Letters, 1999, 21, 1051-1054.	2.2	88
74	An Enzymatic Toolbox for Cascade Reactions: A Showcase for an Inâ€Vivo Redox Sequence in Asymmetric Synthesis. ChemCatChem, 2013, 5, 3524-3528.	3.7	88
75	Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. Advanced Synthesis and Catalysis, 2011, 353, 2191-2215.	4.3	86
76	Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Ophiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron: Asymmetry, 2001, 12, 545-556.	1.8	85
77	Lipase-catalyzed solid-phase synthesis of sugar fatty acid esters. Enzyme and Microbial Technology, 1999, 25, 725-728.	3.2	84
78	Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1527-1531.	1.9	82
79	Directed evolution of an esterase: screening of enzyme libraries based on ph-Indicators and a growth assay. Bioorganic and Medicinal Chemistry, 1999, 7, 2169-2173.	3.0	82
80	A self-sufficient Baeyer–Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol. Enzyme and Microbial Technology, 2013, 53, 283-287.	3.2	81
81	Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles, 2009, 13, 769-783.	2.3	80
82	Revealing the Structural Basis of Promiscuous Amine Transaminase Activity. ChemCatChem, 2013, 5, 154-157.	3.7	80
83	Characterization and enantioselectivity of a recombinant esterase from Pseudomonas fluorescens. Enzyme and Microbial Technology, 1998, 22, 641-646.	3.2	77
84	A High-Throughput-Screening Method for Determining the Synthetic Activity of Hydrolases. Angewandte Chemie - International Edition, 2003, 42, 1418-1420.	13.8	77
85	Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expression and Purification, 2008, 62, 90-97.	1.3	77
86	Exploiting the Regioselectivity of Baeyer–Villiger Monooxygenases for the Formation of βâ€Amino Acids and βâ€Amino Alcohols. Angewandte Chemie - International Edition, 2010, 49, 4506-4508.	13.8	77
87	Fully automatized highâ€ŧhroughput enzyme library screening using a robotic platform. Biotechnology and Bioengineering, 2016, 113, 1421-1432.	3.3	77
88	Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chemical Science, 2017, 8, 1406-1413.	7.4	77
89	Creation of a Lipase Highly Selective for <i>trans</i> Fatty Acids by Protein Engineering. Angewandte Chemie - International Edition, 2012, 51, 412-414.	13.8	76
90	Two-step enzymatic reaction for the synthesis of pure structured triacylglycerides. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 703-710.	1.9	75

#	Article	IF	CITATIONS
91	Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into É>-caprolactone. Enzyme and Microbial Technology, 2013, 53, 288-292.	3.2	75
92	Enzymes in Lipid Modification. Annual Review of Food Science and Technology, 2018, 9, 85-103.	9.9	75
93	Factors affecting the lipase catalyzed transesterification reactions of 3-hydroxy esters in organic solvents Tetrahedron: Asymmetry, 1993, 4, 1007-1016.	1.8	74
94	Biocatalytic synthesis of optically active tertiary alcohols. Applied Microbiology and Biotechnology, 2011, 91, 505-517.	3.6	74
95	CO ₂ Fixation through Hydrogenation by Chemical or Enzymatic Methods. Angewandte Chemie - International Edition, 2014, 53, 4527-4528.	13.8	74
96	Lipase of Pseudomonas cepacia for biotechnological purposes: purification, crystallization and characterization. Biochimica Et Biophysica Acta - General Subjects, 1994, 1201, 55-60.	2.4	73
97	Rapid screening of hydrolases for the enantioselective conversion of â€~difficult-to-resolve' substrates. Tetrahedron: Asymmetry, 2000, 11, 4781-4790.	1.8	72
98	The Metagenome-Derived Enzymes LipS and LipT Increase the Diversity of Known Lipases. PLoS ONE, 2012, 7, e47665.	2.5	72
99	Chemoenzymatic Dynamic Kinetic Resolution of Acyloins. Journal of Organic Chemistry, 2005, 70, 9551-9555.	3.2	71
100	Getting Momentum: From Biocatalysis to Advanced Synthetic Biology. Trends in Biochemical Sciences, 2018, 43, 180-198.	7.5	70
101	Directed Evolution of an Esterase from Pseudomonas fluorescens Yields a Mutant with Excellent Enantioselectivity and Activity for the Kinetic Resolution of a Chiral Building Block. ChemBioChem, 2006, 7, 805-809.	2.6	69
102	Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnology Letters, 2007, 29, 1393-1398.	2.2	68
103	Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	68
104	Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnology Advances, 2018, 36, 247-263.	11.7	68
105	Highlights in Biocatalysis - Historical Landmarks and Current Trends. Engineering in Life Sciences, 2005, 5, 309-323.	3.6	67
106	Converting an Esterase into an Epoxide Hydrolase. Angewandte Chemie - International Edition, 2009, 48, 3532-3535.	13.8	67
107	Connecting Unexplored Protein Crystal Structures to Enzymatic Function. ChemCatChem, 2013, 5, 150-153.	3.7	67
108	Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Applied Microbiology and Biotechnology, 2007, 73, 1065-1072.	3.6	66

#	Article	IF	CITATIONS
109	The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Applied Microbiology and Biotechnology, 2011, 91, 1061-1072.	3.6	64
110	Extracellular production of active Rhizopus oryzae lipase by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 1998, 86, 164-168.	0.9	63
111	The Use of Vinyl Esters Significantly Enhanced Enantioselectivities and Reaction Rates in Lipase-Catalyzed Resolutions of Arylaliphatic Carboxylic Acids. Journal of Organic Chemistry, 1999, 64, 1709-1712.	3.2	63
112	From waste to value – direct utilization of limonene from orange peel in a biocatalytic cascade reaction towards chiral carvolactone. Green Chemistry, 2017, 19, 367-371.	9.0	63
113	Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1399, 173-180.	2.4	61
114	Non-Racemic Halohydrinsvia Biocatalytic Hydrogen-Transfer Reduction of Halo-Ketones and One-Pot Cascade Reaction to Enantiopure Epoxides. Advanced Synthesis and Catalysis, 2005, 347, 1827-1834.	4.3	60
115	Wholeâ€Cell Photoenzymatic Cascades to Synthesize Longâ€Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angewandte Chemie - International Edition, 2020, 59, 7024-7028.	13.8	60
116	A colorimetric assay suitable for screening epoxide hydrolase activity. Analytica Chimica Acta, 1999, 391, 345-351.	5.4	59
117	Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis. Protein Engineering, Design and Selection, 2007, 20, 125-131.	2.1	59
118	Highly Enantioselective Synthesis of Arylaliphatic Tertiary Alcohols using Mutants of an Esterase fromBacillus subtilis. Advanced Synthesis and Catalysis, 2007, 349, 1393-1398.	4.3	59
119	Understanding Promiscuous Amidase Activity of an Esterase from <i>Bacillus subtilis</i> . ChemBioChem, 2008, 9, 67-69.	2.6	58
120	Biotransformation of Linoleic Acid into Hydroxy Fatty Acids and Carboxylic Acids Using a Linoleate Double Bond Hydratase as Key Enzyme. Advanced Synthesis and Catalysis, 2015, 357, 408-416.	4.3	58
121	Engineering and application of enzymes for lipid modification, an update. Progress in Lipid Research, 2016, 63, 153-164.	11.6	58
122	Directed evolution of a Baeyer–Villiger monooxygenase to enhance enantioselectivity. Applied Microbiology and Biotechnology, 2008, 81, 465-472.	3.6	57
123	Protein engineering and discovery of lipases. European Journal of Lipid Science and Technology, 2010, 112, 64-74.	1.5	56
124	Enzymatic Conversion of Flavonoids using Bacterial Chalcone Isomerase and Enoate Reductase. Angewandte Chemie - International Edition, 2014, 53, 1439-1442.	13.8	56
125	The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future. Metabolic Engineering, 2022, 71, 77-98.	7.0	55
126	A Protection Strategy Substantially Enhances Rate and Enantioselectivity in ï‰â€Transaminase atalyzed Kinetic Resolutions. Advanced Synthesis and Catalysis, 2008, 350, 807-812.	4.3	54

#	Article	IF	CITATIONS
127	Efficient Reduction of Ethyl 2â€Oxoâ€4â€phenylbutyrate at 620â€gâ‹L ^{â^'1} by a Bacterial Reduct with Broad Substrate Spectrum. Advanced Synthesis and Catalysis, 2011, 353, 1213-1217.	ase 4.3	54
128	The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase. Journal of Biotechnology, 2015, 214, 199-211.	3.8	54
129	Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs. Angewandte Chemie - International Edition, 2021, 60, 1524-1527.	13.8	54
130	Engineering theÂprotein dynamics of anÂancestral luciferase. Nature Communications, 2021, 12, 3616.	12.8	54
131	Enantioselective Hydrolysis ofd,l-Menthyl Benzoate toL-(-)-Menthol by RecombinantCandida rugosa Lipase LIP1. Advanced Synthesis and Catalysis, 2002, 344, 1152-1155.	4.3	53
132	A Single Residue Influences the Reaction Mechanism of Ammonia Lyases and Mutases. Angewandte Chemie - International Edition, 2009, 48, 3362-3365.	13.8	53
133	Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates. Protein Engineering, Design and Selection, 2010, 23, 929-933.	2.1	51
134	Use of †small but smart' libraries to enhance the enantioselectivity of an esterase from <i>BacillusÂstearothermophilus</i> towards tetrahydrofuranâ€3â€yl acetate. FEBS Journal, 2013, 280, 3084-3093.	4.7	51
135	Engineering and evaluation of thermostable <i>Is</i> PETase variants for PET degradation. Engineering in Life Sciences, 2022, 22, 192-203.	3.6	51
136	Kinetic Resolution of 4-Hydroxy-2-ketones Catalyzed by a Baeyer–Villiger Monooxygenase. Angewandte Chemie - International Edition, 2006, 45, 7004-7006.	13.8	50
137	Isoenzymes of Pigâ€Liver Esterase Reveal Striking Differences in Enantioselectivities. Angewandte Chemie - International Edition, 2007, 46, 8492-8494.	13.8	50
138	A Fedâ€Batch Synthetic Strategy for a Threeâ€Step Enzymatic Synthesis of Polyâ€iµâ€caprolactone. ChemCatChem, 2016, 8, 3446-3452.	3.7	50
139	Kinetic insights into ϵâ€caprolactone synthesis: Improvement of an enzymatic cascade reaction. Biotechnology and Bioengineering, 2017, 114, 1215-1221.	3.3	50
140	Cloning, Functional Expression, and Characterization of Recombinant Pig Liver Esterase. ChemBioChem, 2001, 2, 576-582.	2.6	49
141	Immobilization of (R)- and (S)-amine transaminases on chitosan support and their application for amine synthesis using isopropylamine as donor. Journal of Biotechnology, 2014, 191, 32-37.	3.8	49
142	Enzymatic Removal of Carboxyl Protecting Groups. 1. Cleavage of thetert-Butyl Moiety. Journal of Organic Chemistry, 2005, 70, 3737-3740.	3.2	48
143	Functional expression, purification, and characterization of the recombinant Baeyer-Villiger monooxygenase MekA from Pseudomonas veronii MEK700. Applied Microbiology and Biotechnology, 2008, 77, 1251-1260.	3.6	48
144	Enzymatic removal of 3â€monochloroâ€1,2â€propanediol (3â€MCPD) and its esters from oils. European Journal of Lipid Science and Technology, 2010, 112, 552-556.	1.5	48

#	Article	IF	CITATIONS
145	Switching the Regioselectivity of a Cyclohexanone Monooxygenase toward (+)- <i>trans</i> -Dihydrocarvone by Rational Protein Design. ACS Chemical Biology, 2016, 11, 38-43.	3.4	48
146	Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens towards alcohols and carboxylic acids. Journal of Biotechnology, 1998, 60, 105-111.	3.8	47
147	Biocatalytic Access to Chiral Polyesters by an Artificial Enzyme Cascade Synthesis. ChemCatChem, 2015, 7, 3951-3955.	3.7	47
148	Protein-engineering of an amine transaminase for the stereoselective synthesis of a pharmaceutically relevant bicyclic amine. Organic and Biomolecular Chemistry, 2016, 14, 10249-10254.	2.8	47
149	Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases. Nature Chemical Biology, 2018, 14, 342-344.	8.0	47
150	Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7βâ€Hydroxylation of Lithocholic Acid. Angewandte Chemie - International Edition, 2021, 60, 753-757.	13.8	47
151	Fluorophoric Assay for the High-Throughput Determination of Amidase Activity. Analytical Chemistry, 2003, 75, 255-260.	6.5	46
152	A New Route to Protected Acyloins and Their Enzymatic Resolution with Lipases. European Journal of Organic Chemistry, 2004, 2004, 1063-1074.	2.4	46
153	Efficient Biocatalysis with Immobilized Enzymes or Encapsulated Whole Cell Microorganism by Using the SpinChem Reactor System. ChemCatChem, 2013, 5, 3529-3532.	3.7	46
154	Two Subtle Amino Acid Changes in a Transaminase Substantially Enhance or Invert Enantiopreference in Cascade Syntheses. ChemBioChem, 2015, 16, 1041-1045.	2.6	46
155	Biocatalysis in the Recycling Landscape for Synthetic Polymers and Plastics towards Circular Textiles. ChemSusChem, 2021, 14, 4028-4040.	6.8	46
156	Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization. ChemBioChem, 2021, 22, 2247-2256.	2.6	46
157	Synthesis of structured triglycerides from peanut oil with immobilized lipase. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 427-433.	1.9	45
158	Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor. Enzyme and Microbial Technology, 2018, 108, 53-58.	3.2	45
159	Combination of the Suzuki–Miyaura Cross oupling Reaction with Engineered Transaminases. Chemistry - A European Journal, 2018, 24, 16009-16013.	3.3	45
160	Activity and stability of lipase in the solid-phase glycerolysis of triolein. Enzyme and Microbial Technology, 1994, 16, 864-869.	3.2	44
161	Fatty acid vinyl esters as acylating agents: A new method for the enzymatic synthesis of monoacylglycerols. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 193-197.	1.9	44
162	Directed Evolution of Enzymes. Angewandte Chemie - International Edition, 1998, 37, 3105-3108.	13.8	44

#	Article	IF	CITATIONS
163	Heterologous Production of Functional Forms of Rhizopus oryzae Lipase in Escherichia coli. Applied and Environmental Microbiology, 2005, 71, 8974-8977.	3.1	44
164	A Combination of Inâ€Vivo Selection and Cell Sorting for the Identification of Enantioselective Biocatalysts. Angewandte Chemie - International Edition, 2011, 50, 8584-8587.	13.8	44
165	Glycine Oxidase Based High-Throughput Solid-Phase Assay for Substrate Profiling and Directed Evolution of (<i>R</i>)- and (<i>S</i>)-Selective Amine Transaminases. Analytical Chemistry, 2014, 86, 11847-11853.	6.5	44
166	Enhancing the Acyltransferase Activity of <i>Candida antarctica</i> Lipase A by Rational Design. ChemBioChem, 2015, 16, 1791-1796.	2.6	44
167	Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Applied Microbiology and Biotechnology, 2015, 99, 6267-6275.	3.6	44
168	High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis. Applied Microbiology and Biotechnology, 2007, 74, 634-639.	3.6	43
169	Properties and biotechnological methods to produce lipids containing conjugated linoleic acid. European Journal of Lipid Science and Technology, 2008, 110, 491-504.	1.5	43
170	Engineering the Amine Transaminase from <i>Vibrio fluvialis</i> towards Branched hain Substrates. ChemCatChem, 2016, 8, 3199-3202.	3.7	43
171	By Overexpression in the YeastPichia pastoris to Enhanced Enantioselectivity: New Aspects in the Application of Pig Liver Esterase. Angewandte Chemie - International Edition, 2001, 40, 2851-2853.	13.8	42
172	Synthesis of 2-monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases. European Journal of Lipid Science and Technology, 2003, 105, 68-73.	1.5	42
173	Cloning, Expression, Characterization, and Biocatalytic Investigation of the 4-Hydroxyacetophenone Monooxygenase from <i>Pseudomonas putida</i> JD1. Applied and Environmental Microbiology, 2009, 75, 3106-3114.	3.1	42
174	Switch in Cofactor Specificity of a Baeyer–Villiger Monooxygenase. ChemBioChem, 2016, 17, 2312-2315.	2.6	42
175	Amine Transaminase Engineering for Spatially Bulky Substrate Acceptance. ChemBioChem, 2017, 18, 1022-1026.	2.6	41
176	Isopropylamine as Amine Donor in Transaminaseâ€Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem, 2018, 10, 3943-3949.	3.7	41
177	Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T. Applied Microbiology and Biotechnology, 2018, 102, 6987-6996.	3.6	41
178	Identification of a metagenome-derived esterase with high enantioselectivity in the kinetic resolution of arylaliphatic tertiary alcohols. Organic and Biomolecular Chemistry, 2007, 5, 3310.	2.8	40
179	Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Applied Microbiology and Biotechnology, 2010, 85, 1417-1425.	3.6	40
180	Sequenceâ€Based Prediction of Promiscuous Acyltransferase Activity in Hydrolases. Angewandte Chemie - International Edition, 2020, 59, 11607-11612.	13.8	40

#	Article	IF	CITATIONS
181	Epoxide hydrolase activity of Streptomyces strains. Journal of Biotechnology, 2000, 77, 287-292.	3.8	39
182	In Silico Based Engineering Approach to Improve Transaminases for the Conversion of Bulky Substrates. ACS Catalysis, 2018, 8, 11524-11533.	11.2	39
183	Functional expression of the \hat{I}^3 -isoenzyme of pig liver carboxyl esterase in Escherichia coli. Applied Microbiology and Biotechnology, 2007, 73, 1282-1289.	3.6	38
184	Controlling the Regioselectivity of Baeyer–Villiger Monooxygenases by Mutation of Active‣ite Residues. ChemBioChem, 2017, 18, 1627-1638.	2.6	38
185	Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catalysis Science and Technology, 2020, 10, 46-64.	4.1	38
186	Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens. Nature Communications, 2022, 13, 371.	12.8	38
187	Lipase-catalysed resolution of \hat{I}^3 - and \hat{I} -lactones. Journal of Biotechnology, 1997, 56, 129-133.	3.8	37
188	Emulation of Racemase Activity by Employing a Pair of Stereocomplementary Biocatalysts. Chemistry - A European Journal, 2007, 13, 8271-8276.	3.3	37
189	Improving ascorbyl oleate synthesis catalyzed by Candida antarctica lipase B in ionic liquids and water activity control by salt hydrates. Process Biochemistry, 2009, 44, 257-261.	3.7	37
190	Suppression of Water as a Nucleophile in <i>Candida antarctica</i> Lipase B Catalysis. ChemBioChem, 2010, 11, 796-801.	2.6	37
191	Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase Asal on bacterial virulence. Veterinary Microbiology, 2011, 147, 389-397.	1.9	37
192	Altering the scissile fatty acid binding site of <i>Candida antarctica</i> lipase A by protein engineering for the selective hydrolysis of medium chain fatty acids. European Journal of Lipid Science and Technology, 2012, 114, 1148-1153.	1.5	37
193	In-Depth High-Throughput Screening of Protein Engineering Libraries by Split-GFP Direct Crude Cell Extract Data Normalization. Chemistry and Biology, 2015, 22, 1406-1414.	6.0	37
194	An alternative approach towards poly-ε-caprolactone through a chemoenzymatic synthesis: combined hydrogenation, bio-oxidations and polymerization without the isolation of intermediates. Green Chemistry, 2017, 19, 1286-1290.	9.0	37
195	Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry. Science of the Total Environment, 2021, 773, 145111.	8.0	37
196	Esterases from Bacillus subtilis and B. stearothermophilus share high sequence homology but differ substantially in their properties. Applied Microbiology and Biotechnology, 2002, 60, 320-326.	3.6	36
197	Enzymimmobilisierung: ein Weg zu verbesserten Biokatalysatoren. Angewandte Chemie, 2003, 115, 3458-3459.	2.0	36
198	Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. Applied Microbiology and Biotechnology, 2011, 91, 1049-1060.	3.6	36

#	Article	IF	CITATIONS
199	Crystallographic characterization of the (<i>R</i>)-selective amine transaminase from <i>Aspergillus fumigatus</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1086-1093.	2.5	36
200	Biocatalysis: Successfully Crossing Boundaries. Angewandte Chemie - International Edition, 2016, 55, 4372-4373.	13.8	36
201	Alteration of Chain Length Selectivity of <i>Candida antarctica</i> Lipase A by Semiâ€Rational Design for the Enrichment of Erucic and Gondoic Fatty Acids. Advanced Synthesis and Catalysis, 2018, 360, 4115-4131.	4.3	36
202	Chemoâ€Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials. ChemSusChem, 2021, 14, 4251-4259.	6.8	36
203	Production of sugar fatty acid estrs by enzymatic esterification in a stirred-tank membrane reactor: Optimization of parameters by response surface methodology. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 147-153.	1.9	35
204	Kinetic resolution of aliphatic acyclic β-hydroxyketones by recombinant whole-cell Baeyer–Villiger monooxygenases—Formation of enantiocomplementary regioisomeric esters. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3739-3743.	2.2	35
205	In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer–Villiger monooxygenase. Journal of Biotechnology, 2014, 192, 393-399.	3.8	35
206	Cellulose as an efficient matrix for lipase and transaminase immobilization. RSC Advances, 2016, 6, 6665-6671.	3.6	35
207	Simultaneous detection of NADPH consumption and H2O2 production using the Amplifluâ,,¢ Red assay for screening of P450 activities and uncoupling. Applied Microbiology and Biotechnology, 2018, 102, 985-994.	3.6	35
208	Protein Engineering for Enhanced Acyltransferase Activity, Substrate Scope, and Selectivity of the <i>Mycobacterium smegmatis</i> Acyltransferase MsAcT. ACS Catalysis, 2020, 10, 7552-7562.	11.2	35
209	A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution. Protein Engineering, Design and Selection, 2008, 21, 567-576.	2.1	34
210	Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization. Applied Microbiology and Biotechnology, 2012, 96, 419-429.	3.6	34
211	Synthesis of aromatic n-alkyl-glucoside esters in a coupled β-glucosidase and lipase reaction. Biotechnology Letters, 1998, 20, 437-440.	2.2	33
212	A versatile esterase fromBacillus subtilis: Cloning, expression, characterization, and its application in biocatalysis. Biotechnology Journal, 2007, 2, 249-253.	3.5	33
213	Enzymatic Synthesis of Enantiomerically Pure βâ€Amino Ketones, βâ€Amino Esters, and βâ€Amino Alcohols with Baeyer–Villiger Monooxygenases. Chemistry - A European Journal, 2010, 16, 9525-9535.	3.3	33
214	Asymmetric synthesis of d-glyceric acid by an alditol oxidase and directed evolution for enhanced oxidative activity towards glycerol. Applied Microbiology and Biotechnology, 2012, 96, 1243-1252.	3.6	33
215	MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.	5.5	33
216	Lipase-catalyzed kinetic resolution of 3-hydroxy esters in organic solvents and supercritical carbon dioxide. Enzyme and Microbial Technology, 1996, 19, 181-186.	3.2	32

#	Article	IF	CITATIONS
217	Synthesis of ascorbyloleate by immobilized Candida antarctica lipases. Process Biochemistry, 2005, 40, 3177-3180.	3.7	32
218	Immobilization of two (<i>R</i>)â€Amine Transaminases on an Optimized Chitosan Support for the Enzymatic Synthesis of Optically Pure Amines. ChemCatChem, 2013, 5, 588-593.	3.7	32
219	Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. ChemSusChem, 2019, 12, 848-857.	6.8	32
220	Chemoenzymatic route to \hat{I}^2 -blockers via 3-hydroxy esters. Tetrahedron: Asymmetry, 1996, 7, 2017-2022.	1.8	31
221	Title is missing!. Biotechnology Letters, 1998, 20, 1091-1094.	2.2	31
222	Lipase-Catalyzed Solid-Phase Synthesis of Sugar Esters, IV: Selectivity of Lipases Towards Primary and Secondary Hydroxyl Groups in Carbohydrates. Biocatalysis and Biotransformation, 1998, 16, 249-257.	2.0	31
223	Enzymatic Removal of Carboxyl Protecting Groups. 2. Cleavage of the Benzyl and Methyl Moieties. Journal of Organic Chemistry, 2005, 70, 8730-8733.	3.2	31
224	Eine Enzymkaskade zur Synthese von ε aprolacton und dessen Oligomeren. Angewandte Chemie, 2015, 127, 2825-2828.	2.0	31
225	Random Mutagenesisâ€Driven Improvement of Carboxylate Reductase Activity using an Amino Benzamidoximeâ€Mediated Highâ€Throughput Assay. Advanced Synthesis and Catalysis, 2019, 361, 2544-2549.	4.3	31
226	Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope. Biotechnology and Bioengineering, 2002, 78, 31-34.	3.3	30
227	Lipase CAL-B does not catalyze a promiscuous decarboxylative aldol addition or Knoevenagel reaction. Green Chemistry, 2011, 13, 1141.	9.0	30
228	Identification, Characterization, and Application of Three Enoate Reductases from <i>Pseudomonasâ€putida</i> in Inâ€Vitro Enzyme Cascade Reactions. ChemCatChem, 2014, 6, 1021-1027.	3.7	30
229	Oneâ€Pot Bioconversion of <scp>l</scp> â€Arabinose to <scp>l</scp> â€Ribulose in an Enzymatic Cascade. Angewandte Chemie - International Edition, 2019, 58, 2428-2432.	13.8	30
230	A comparison of different strategies for lipase-catalyzed synthesis of partial glycerides. Biotechnology Letters, 1994, 16, 697-702.	2.2	29
231	Enantioselective kinetic resolution of 3-phenyl-2-ketones using Baeyer–Villiger monooxygenases. Tetrahedron: Asymmetry, 2007, 18, 892-895.	1.8	29
232	Promiscuous enantioselective (â^')-Î ³ -lactamase activity in the Pseudomonas fluorescens esterase I. Organic and Biomolecular Chemistry, 2012, 10, 3388.	2.8	29
233	Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis. International Journal of Molecular Sciences, 2015, 16, 26953-26963.	4.1	29
234	Simultaneous Use of in Silico Design and a Correlated Mutation Network as a Tool To Efficiently Guide Enzyme Engineering. ChemBioChem, 2015, 16, 805-810.	2.6	29

#	Article	IF	CITATIONS
235	Structural and biochemical characterization of the dual substrate recognition of the (<i>R</i>)â€selective amine transaminase from <i>AspergillusÂfumigatus</i> . FEBS Journal, 2015, 282, 407-415.	4.7	29
236	Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones. Biological Chemistry, 2017, 398, 31-37.	2.5	29
237	Substrateâ€Independent Highâ€Throughput Assay for the Quantification of Aldehydes. Advanced Synthesis and Catalysis, 2019, 361, 2538.	4.3	29
238	Influences of reaction conditions on the enantioselective transesterification using Pseudomonas cepacia lipase. Tetrahedron: Asymmetry, 1991, 2, 1011-1014.	1.8	28
239	Lipase mediated desymmetrization of meso-2,6-di(acetoxymethyl)-tetrahydropyran-4-one derivatives. An innovative route to enantiopure 2,4,6-trifunctionalized C-glycosides. Tetrahedron: Asymmetry, 1996, 7, 2889-2900.	1.8	28
240	Efficient resolution of prostereogenic arylaliphatic ketones using a recombinant alcohol dehydrogenase from Pseudomonas fluorescens. Tetrahedron: Asymmetry, 2001, 12, 1207-1210.	1.8	28
241	Enhancement of the Stability of a Prolipase from <i>Rhizopus oryzae</i> toward Aldehydes by Saturation Mutagenesis. Applied and Environmental Microbiology, 2007, 73, 7291-7299.	3.1	28
242	Rational Protein Design of <i>Paenibacillus barcinonensis</i> Esterase EstA for Kinetic Resolution of Tertiary Alcohols. ChemCatChem, 2010, 2, 962-967.	3.7	28
243	Targeted Enzyme Engineering Unveiled Unexpected Patterns of Halogenase Stabilization. ChemCatChem, 2020, 12, 818-831.	3.7	28
244	Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemical Communications, 2021, 57, 10661-10674.	4.1	28
245	Synthesis of structured triglycerides by lipase catalysis. Lipid - Fett, 1998, 100, 156-160.	0.4	27
246	Lipase-catalyzed synthesis of arylaliphatic esters of β-d(+)-glucose, n-alkyl- and arylglucosides and characterization of their surfactant properties. Journal of Biotechnology, 1998, 64, 231-237.	3.8	27
247	Synthesis and resolution of a key building block for epothilones: a comparison of asymmetric synthesis, chemical and enzymatic resolution. Tetrahedron: Asymmetry, 2004, 15, 2861-2869.	1.8	27
248	The use of methoxy acetoxy esters significantly enhances reaction rates in the lipase-catalyzed preparation of enantiopure 1-(4-chloro phenyl) ethyl amines. Journal of Biotechnology, 1998, 61, 75-78.	3.8	26
249	Lipase-Catalyzed Resolution of Ibuprofen. Monatshefte Für Chemie, 2000, 131, 633-638.	1.8	26
250	Directed Evolution of Lipases and Esterases. Methods in Enzymology, 2004, 388, 199-207.	1.0	26
251	Synthesis of Enantiomerically Pure Cyclohex-2-en-1-ols: Development of Novel Multicomponent Reactions. Chemistry - A European Journal, 2005, 11, 4210-4218.	3.3	26
252	Cloning, expression and characterization of a eukaryotic cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011. Applied Microbiology and Biotechnology, 2012, 94, 705-717.	3.6	26

#	Article	IF	CITATIONS
253	Pseudomonas putida esterase contains a GGG(A)X-motif confering activity for the kinetic resolution of tertiary alcohols. Applied Microbiology and Biotechnology, 2012, 93, 1119-1126.	3.6	26
254	Selective Access to All Four Diastereomers of a 1,3â€Amino Alcohol by Combination of a Keto Reductase― and an Amine Transaminaseâ€Catalysed Reaction. Advanced Synthesis and Catalysis, 2015, 357, 1808-1814.	4.3	26
255	Biocompatible metal-assisted C–C cross-coupling combined with biocatalytic chiral reductions in a concurrent tandem cascade. Chemical Communications, 2018, 54, 12978-12981.	4.1	26
256	Lipase-catalyzed synthesis of structured triacylglycerides from 1,3-diacylglycerides. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 151-155.	1.9	25
257	Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations. Enzyme and Microbial Technology, 2018, 109, 31-42.	3.2	25
258	Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids. Advanced Synthesis and Catalysis, 2019, 361, 1359-1367.	4.3	25
259	Discovery and Design of Familyâ€VIII Carboxylesterases as Highly Efficient Acyltransferases. Angewandte Chemie - International Edition, 2021, 60, 2013-2017.	13.8	25
260	Development of a chemical vapor sensor using piezoelectric quartz crystals with coated unusual lipids. Analytica Chimica Acta, 1997, 340, 41-48.	5.4	24
261	Hydrolase-catalyzed stereoselective preparation of protected α,α-dialkyl-α-hydroxycarboxylic acids. Tetrahedron: Asymmetry, 2008, 19, 1839-1843.	1.8	24
262	Protein Engineering of Carboxyl Esterases by Rational Design and Directed Evolution. Protein and Peptide Letters, 2009, 16, 1162-1171.	0.9	24
263	Protein engineering of a thermostable polyol dehydrogenase. Enzyme and Microbial Technology, 2012, 51, 217-224.	3.2	24
264	Enzymes in lipid modification: Past achievements and current trends. European Journal of Lipid Science and Technology, 2014, 116, 1322-1331.	1.5	24
265	Asymmetric Synthesis of Chiral Halogenated Amines using Amine Transaminases. ChemCatChem, 2018, 10, 951-955.	3.7	24
266	Glycoside hydrolase (PelAh) immobilization prevents Pseudomonas aeruginosa biofilm formation on cellulose-based wound dressing. Carbohydrate Polymers, 2020, 246, 116625.	10.2	24
267	Creation of (<i>R</i>)-Amine Transaminase Activity within an α-Amino Acid Transaminase Scaffold. ACS Chemical Biology, 2020, 15, 416-424.	3.4	24
268	Development of an odorant sensor using polymer-coated quartz crystals modified with unusual lipids. Biosensors and Bioelectronics, 1998, 13, 397-405.	10.1	23
269	Trends and Challenges in Enzyme Technology. , 2005, 100, 181-203.		23
270	Enantioselective kinetic resolution of phenylalkyl carboxylic acids using metagenomeâ€derived esterases. Microbial Biotechnology, 2010, 3, 59-64.	4.2	23

#	Article	IF	CITATIONS
271	Characterization of a novel esterase isolated from intertidal flat metagenome and its tertiary alcohols synthesis. Journal of Molecular Catalysis B: Enzymatic, 2012, 80, 67-73.	1.8	23
272	Metabolism of alkenes and ketones by Candida maltosa and related yeasts. AMB Express, 2014, 4, 75.	3.0	23
273	Kinetic Modeling of an Enzymatic Redox Cascade Inâ€Vivo Reveals Bottlenecks Caused by Cofactors. ChemCatChem, 2017, 9, 3420-3427.	3.7	23
274	Directed Evolution of Enzymes for Biocatalytic Applications. Biocatalysis and Biotransformation, 2001, 19, 85-97.	2.0	22
275	Increased Enantioselectivity by Engineering Bottleneck Mutants in an Esterase from <i>Pseudomonas fluorescens</i> . ChemBioChem, 2009, 10, 2920-2923.	2.6	22
276	Oneâ€step enzyme extraction and immobilization for biocatalysis applications. Biotechnology Journal, 2011, 6, 463-469.	3.5	22
277	Efficient phosphatidylserine synthesis by a phospholipase D from <i>Streptomyces</i> sp. SC734 isolated from soilâ€contaminated palm oil. European Journal of Lipid Science and Technology, 2016, 118, 803-813.	1.5	22
278	Maghemite nanoparticles stabilize the protein corona formed with transferrin presenting different iron-saturation levels. Nanoscale, 2019, 11, 16063-16070.	5.6	22
279	A multi-enzyme cascade reaction for the production of 6-hydroxyhexanoic acid. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2019, 74, 71-76.	1.4	22
280	Wholeâ€Cell Photoenzymatic Cascades to Synthesize Longâ€Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angewandte Chemie, 2020, 132, 7090-7094.	2.0	22
281	Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiology Reviews, 2002, 26, 73-81.	8.6	22
282	Recombinant porcine intestinal carboxylesterase: cloning from the pig liver esterase gene by site-directed mutagenesis, functional expression and characterization. Protein Engineering, Design and Selection, 2003, 16, 1139-1145.	2.1	21
283	Enzymatic Removal of Carboxyl Protecting Groups. III. Fast Removal of Allyl and Chloroethyl Esters byBacillus subtilisEsterase (BS2). Journal of Organic Chemistry, 2007, 72, 782-786.	3.2	21
284	C–N coupling of 3-methylcatechol with primary amines using native and recombinant laccases from Trametes versicolor and Pycnoporus cinnabarinus. Tetrahedron, 2011, 67, 9311-9321.	1.9	21
285	Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007. AMB Express, 2011, 1, 13.	3.0	21
286	Investigation of the Cosolvent Effect on Six Isoenzymes of PLE in the Enantioselective Hydrolysis of Selected α,αâ€Ðisubstituted Malonate Esters. ChemCatChem, 2012, 4, 472-475.	3.7	21
287	The acyltransferase activity of lipase CALâ€A allows efficient fatty acid esters formation from plant oil even in an aqueous environment. European Journal of Lipid Science and Technology, 2015, 117, 1903-1907. 	1.5	21
288	Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 907-917.	2.5	21

#	Article	IF	CITATIONS
289	A Systematic Analysis of the Substrate Scope of (<i>S</i>)―and (<i>R</i>) elective Amine Transaminases. Advanced Synthesis and Catalysis, 2017, 359, 4235-4243.	4.3	21
290	A Retroâ€biosynthesisâ€Based Route to Generate Pineneâ€Derived Polyesters. ChemBioChem, 2019, 20, 1664-1671.	2.6	21
291	Biocatalytic Cascade Reaction for the Asymmetric Synthesis of L―and Dâ€Homoalanine. ChemCatChem, 2019, 11, 407-411.	3.7	21
292	Crucial Role of Support and Water Activity on the Lipase-Catalyzed Synthesis of Structured Triglycerides. Biocatalysis and Biotransformation, 1999, 16, 443-459.	2.0	20
293	Overexpression and characterization of an esterase from Streptomyces diastatochromogenes. , 1999, 21, 101-104.		20
294	An Enzymatic Toolbox for the Kinetic Resolution of 2â€(Pyridinâ€ <i>x</i> â€yl)butâ€3â€ynâ€2â€ols and Tertiary Cyanohydrins. European Journal of Organic Chemistry, 2010, 2010, 2753-2758.	2.4	20
295	Simulation on the structure of pig liver esterase. Journal of Molecular Modeling, 2011, 17, 1493-1506.	1.8	20
296	The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Applied Microbiology and Biotechnology, 2012, 94, 141-150.	3.6	20
297	From Commercial Enzymes to Biocatalysts Designed by Protein Engineering. Synlett, 2013, 24, 150-156.	1.8	20
298	Conversion of a Mono―and Diacylglycerol Lipase into a Triacylglycerol Lipase by Protein Engineering. ChemBioChem, 2015, 16, 1431-1434.	2.6	20
299	Process Development through Solvent Engineering in the Biocatalytic Synthesis of the Heterocyclic Bulk Chemical ε aprolactone. Journal of Heterocyclic Chemistry, 2017, 54, 391-396.	2.6	20
300	The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of <i>Pseudomonas putida</i> : the first crystal structure of a type II Baeyer–Villiger monooxygenase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2344-2353.	2.5	20
301	Properties of unusual phospholipids IV: Chemoenzymatic synthesis of phospholipids bearing acetylenic fatty acids. Tetrahedron, 1997, 53, 14627-14634.	1.9	19
302	Alteration of lipase properties by protein engineering methods. Oleagineux Corps Gras Lipides, 2008, 15, 184-188.	0.2	19
303	The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochemical and Biophysical Research Communications, 2012, 424, 365-370.	2.1	19
304	A radical change in enzyme catalysis. Nature, 2016, 540, 345-346.	27.8	19
305	Beating the odds. Nature Chemical Biology, 2016, 12, 54-55.	8.0	19
306	Synthesis of (1R,3R)-1-amino-3-methylcyclohexane by an enzyme cascade reaction. Tetrahedron, 2016, 72, 7207-7211.	1.9	19

#	Article	IF	CITATIONS
307	Gerichtete Evolution ermöglicht das Design von maßgeschneiderten Proteinen zur nachhaltigen Produktion von Chemikalien und Pharmazeutika. Angewandte Chemie, 2019, 131, 36-41.	2.0	19
308	Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catalysis, 2021, 11, 14906-14915.	11.2	19
309	Cloning, functional expression and biochemical characterization of a stereoselective alcohol dehydrogenase from Pseudomonas fluorescens DSM50106. Applied Microbiology and Biotechnology, 2002, 59, 483-487.	3.6	18
310	An improved assay for the determination of phospholipaseâ€C activity. European Journal of Lipid Science and Technology, 2007, 109, 469-473.	1.5	18
311	3′-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli. Scientific Reports, 2016, 6, 29406.	3.3	18
312	Strategies for enriching erucic acid from Crambe abyssinica oil by improved Candida antarctica lipase A variants. Process Biochemistry, 2019, 79, 65-73.	3.7	18
313	How To Break the Janus Effect of H ₂ O ₂ in Biocatalysis? Understanding Inactivation Mechanisms To Generate more Robust Enzymes. ACS Catalysis, 2019, 9, 2916-2921.	11.2	18
314	A whole-cell process for the production of Îμ-caprolactone in aqueous media. Process Biochemistry, 2020, 88, 22-30.	3.7	18
315	Repositioning microbial biotechnology against COVIDâ€19: the case of microbial production of flavonoids. Microbial Biotechnology, 2021, 14, 94-110.	4.2	18
316	Fluorimetric high-throughput screening method for polyester hydrolase activity using polyethylene terephthalate nanoparticles. Methods in Enzymology, 2021, 648, 253-270.	1.0	18
317	Branched Phosphatidylcholines Stimulate Activity of Cytochrome P450SCC (CYP11A1) in Phospholipid Vesicles by Enhancing Cholesterol Binding, Membrane Incorporation, and Protein Exchange. Journal of Biological Chemistry, 1998, 273, 1380-1386.	3.4	17
318	Regioselective lipase-catalyzed synthesis of glucose ester on a preparative scale. European Journal of Lipid Science and Technology, 2001, 103, 583-587.	1.5	17
319	Synthesis of kyotorphin precursor by an organic solvent-stable protease from Bacillus licheniformis RSP-09-37. Journal of Molecular Catalysis B: Enzymatic, 2004, 32, 1-5.	1.8	17
320	High-throughput screening of activity and enantioselectivity of esterases. Nature Protocols, 2006, 1, 2340-2343.	12.0	17
321	"Enzyme Test Bench,―a highâ€ŧhroughput enzyme characterization technique including the longâ€ŧerm stability. Biotechnology and Bioengineering, 2009, 103, 305-322.	3.3	17
322	Survey of Protein Engineering Strategies. Current Protocols in Protein Science, 2011, 66, Unit26.7.	2.8	17
323	Scale-Up of a Recombinant Pig Liver Esterase-Catalyzed Desymmetrization of Dimethyl Cyclohex-4-ene- <i>cis</i> -1,2-dicarboxylate. Organic Process Research and Development, 2014, 18, 897-903.	2.7	17
324	Structure of productâ€bound <scp>SMG</scp> 1 lipase: active site gating implications. FEBS Journal, 2015, 282, 4538-4547.	4.7	17

#	Article	IF	CITATIONS
325	Properties of unusual phospholipids. III: Synthesis, monolayer investigations and DSC studies of hydroxy octadeca(e)noic acids and diacylglycerophosphocholines derived therefrom. Chemistry and Physics of Lipids, 1997, 90, 117-134.	3.2	16
326	High-Throughput-Screening Systems for Hydrolases. Engineering in Life Sciences, 2004, 4, 539-542.	3.6	16
327	Biocatalysis and biotransformation. Current Opinion in Chemical Biology, 2005, 9, 164-165.	6.1	16
328	Characterization of Lipases and Esterases from Metagenomes for Lipid Modification. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 47-53.	1.9	16
329	Probing the enantioselectivity of Bacillus subtilis esterase BS2 for tert. alcohols. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 82-86.	1.8	16
330	Scale-up of Baeyer–Villiger monooxygenase-catalyzed synthesis of enantiopure compounds. Applied Microbiology and Biotechnology, 2010, 88, 1087-1093.	3.6	16
331	Laccase-mediated synthesis of 2-methoxy-3-methyl-5-(alkylamino)- and 3-methyl-2,5-bis(alkylamino)-[1,4]-benzoquinones. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 91-97.	1.8	16
332	First chemo-enzymatic synthesis of the (R)-Taniguchi lactone and substrate profiles of CAMO and OTEMO, two new Baeyer–Villiger monooxygenases. Monatshefte Für Chemie, 2017, 148, 157-165.	1.8	16
333	Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis. Applied Microbiology and Biotechnology, 2017, 101, 3743-3758.	3.6	16
334	Die gerichtete Evolution einer Halogenidâ€Methyltransferase erlaubt die biokatalytische Synthese diverser SAMâ€Analoga. Angewandte Chemie, 2021, 133, 1547-1551.	2.0	16
335	Asymmetric Cationâ€Olefin Monocyclization by Engineered Squalene–Hopene Cyclases. Angewandte Chemie - International Edition, 2021, 60, 26080-26086.	13.8	16
336	Biosensor and chemo-enzymatic one-pot cascade applications to detect and transform PET-derived terephthalic acid in living cells. IScience, 2022, 25, 104326.	4.1	16
337	Evidence That Nonbilayer Phase Propensity of the Membrane Is Important for the Side Chain Cleavage Activity of Cytochrome P450SCC (CYP11A1)â€. Biochemistry, 1997, 36, 14262-14270.	2.5	15
338	Synthesis of (tetrahydrofuran-2-yl)acetates based on a †̃cyclization/hydrogenation/enzymatic kinetic resolution' strategy. Tetrahedron, 2006, 62, 7132-7139.	1.9	15
339	Immobilization of enzymes in microtiter plate scale. Biotechnology Journal, 2006, 1, 582-587.	3.5	15
340	Chemically and enzymatically catalyzed synthesis of C6-C10alkyl benzoates. European Journal of Lipid Science and Technology, 2009, 111, 194-201.	1.5	15
341	Production of pig liver esterase in batch fermentation of E. coli Origami. Applied Microbiology and Biotechnology, 2010, 86, 1337-1344.	3.6	15
342	From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. ChemBioChem, 2021, 22, 2584-2590.	2.6	15

#	Article	IF	CITATIONS
343	On-line determination of the conversion in a lipase-catalyzed kinetic resolution in supercritical carbon dioxide. Journal of Biotechnology, 1996, 46, 139-143.	3.8	14
344	Site directed mutagenesis of recombinant pig liver esterase yields mutants with altered enantioselectivity. Tetrahedron: Asymmetry, 2003, 14, 1341-1344.	1.8	14
345	Selectivity of lipases and esterases towards phenol esters. Journal of Molecular Catalysis B: Enzymatic, 2005, 36, 8-13.	1.8	14
346	A microtiter plate-based assay method to determine fat quality. European Journal of Lipid Science and Technology, 2007, 109, 180-185.	1.5	14
347	Formation of chiral tertiary homoallylic alcohols via Evans aldol reaction or enzymatic resolution and their influence on the Sharpless asymmetric dihydroxylation. Tetrahedron, 2010, 66, 3814-3823.	1.9	14
348	Conductometric Method for the Rapid Characterization of the Substrate Specificity of Amine-Transaminases. Analytical Chemistry, 2010, 82, 2082-2086.	6.5	14
349	Lipase-catalysed synthesis of modified lipids. , 2012, , 149-182.		14
350	The steroid monooxygenase from Rhodococcus rhodochrous; a versatile biocatalyst. Tetrahedron: Asymmetry, 2013, 24, 1620-1624.	1.8	14
351	Enzymes in lipid modification: From classical biocatalysis with commercial enzymes to advanced protein engineering tools. Oleagineux Corps Gras Lipides, 2013, 20, 45-49.	0.2	14
352	Improved thermostability of a Bacillus subtilis esterase by domain exchange. Applied Microbiology and Biotechnology, 2014, 98, 1719-1726.	3.6	14
353	β-Phenylalanine Ester Synthesis from Stable β-Keto Ester Substrate Using Engineered ω-Transaminases. Molecules, 2018, 23, 1211.	3.8	14
354	A Novel High-Throughput Assay Enables the Direct Identification of Acyltransferases. Catalysts, 2019, 9, 64.	3.5	14
355	Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. The Enzymes, 2020, 47, 231-281.	1.7	14
356	Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnology Letters, 2020, 42, 819-824.	2.2	14
357	Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 199-202.	1.8	13
358	Insights into the physiological role of pig liver esterase: Isoenzymes show differences in the demethylation of prenylated proteins. Bioorganic and Medicinal Chemistry, 2009, 17, 7878-7883.	3.0	13
359	The role of the GGCX motif in determining the activity and enantioselectivity of pig liver esterase towards tertiary alcohols. Biocatalysis and Biotransformation, 2010, 28, 201-208.	2.0	13
360	Lipase-catalysed biodiesel production from Jatropha curcas oil. Lipid Technology, 2012, 24, 158-160.	0.3	13

#	Article	IF	CITATIONS
361	Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli. Applied Microbiology and Biotechnology, 2014, 98, 3975-3986.	3.6	13
362	Bacillus anthracis ω-amino acid:pyruvate transaminase employs a different mechanism for dual substrate recognition than other amine transaminases. Applied Microbiology and Biotechnology, 2016, 100, 4511-4521.	3.6	13
363	Sequenceâ€Based Prediction of Promiscuous Acyltransferase Activity in Hydrolases. Angewandte Chemie, 2020, 132, 11704-11709.	2.0	13
364	Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. Jacs Au, 2021, 1, 1949-1960.	7.9	13
365	Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum. Molecules, 2022, 27, 290.	3.8	13
366	Enantioselective synthesis of 2-alkylidenetetrahydrofurans based on a â€~cyclization/enzymatic resolution' strategy. Tetrahedron: Asymmetry, 2006, 17, 892-899.	1.8	12
367	Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 75, 1095-1101.	3.6	12
368	Comparative analysis of tertiary alcohol esterase activity in bacterial strains isolated from enrichment cultures and from screening strain libraries. Applied Microbiology and Biotechnology, 2011, 90, 929-939.	3.6	12
369	Innate and adaptive immune responses of Arctic charr (Salvelinus alpinus, L.) during infection with Aeromonas salmonicida subsp. achromogenes and the effect of the AsaP1 toxin. Fish and Shellfish Immunology, 2013, 35, 866-873.	3.6	12
370	Protein Engineering from "Scratch―ls Maturing. Angewandte Chemie - International Edition, 2014, 53, 1200-1202.	13.8	12
371	CorNet: Assigning function to networks of co-evolving residues by automated literature mining. PLoS ONE, 2017, 12, e0176427.	2.5	12
372	Efficient Acylation of Sugars and Oligosaccharides in Aqueous Environment Using Engineered Acyltransferases. ACS Catalysis, 2021, 11, 2831-2836.	11.2	12
373	Discovery of Novel Bacterial Chalcone Isomerases by a Sequenceâ€Structureâ€Functionâ€Evolution Strategy for Enzymatic Synthesis of (<i>S</i>)â€Flavanones. Angewandte Chemie - International Edition, 2021, 60, 16874-16879.	13.8	12
374	Highly efficient double enantioselection by lipase-catalyzed transesterification of (R,S)-carboxylic acid vinyl esters with (RS)-1-phenylethanol. Tetrahedron: Asymmetry, 1999, 10, 957-960.	1.8	11
375	Solid-state NMR and FTIR studies on bilayer membranes from 1,2-dioctadec-(14-ynoyl)-sn-glycero-3-phosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1420, 121-138.	2.6	11
376	Aktivitïį½ïį½t von Lipasen und Esterasen gegenïį½ïį½ber tertïïį½ïį½ren Alkoholen: neue Einblicke in Struktur-Funktions-Beziehungen. Angewandte Chemie, 2002, 114, 3338-3341.	2.0	11
377	Polarimetric Assay for the Medium-Throughput Determination of α-Amino Acid Racemase Activity. Analytical Chemistry, 2004, 76, 1184-1188.	6.5	11
378	Cloning, Functional Expression and Characterization of an Alkaline Protease from BacillusÂlicheniformis. Biotechnology Letters, 2005, 27, 1901-1907.	2.2	11

#	Article	IF	CITATIONS
379	Study of the removal of allyl esters by Candida antarctica lipase B (CAL-B) and pig liver esterase (PLE). Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 241-246.	1.8	11
380	Plasmaâ€Modified Polypropylene as Carrier for the Immobilization of <i>Candida antarctica</i> Lipaseâ€B and <i>Pyrobaculum calidifontis</i> Esterase. ChemCatChem, 2010, 2, 992-996.	3.7	11
381	A high-throughput assay method to quantify Baeyer–Villiger monooxygenase activity. Tetrahedron, 2012, 68, 7575-7580.	1.9	11
382	Exploration of the Substrate Promiscuity of Biosynthetic Tailoring Enzymes as a New Source of Structural Diversity for Polyene Macrolide Antifungals. ChemCatChem, 2015, 7, 490-500.	3.7	11
383	Chemoenzymatic Sequential Multistep One-Pot Reaction for the Synthesis of (1S,2R)-1-(Methoxycarbonyl)cyclohex-4-ene-2-carboxylic Acid with Recombinant Pig Liver Esterase. Organic Process Research and Development, 2015, 19, 2034-2038.	2.7	11
384	Fast, Continuous, and High-Throughput (Bio)Chemical Activity Assay for <i>N</i> -Acyl- <scp>I</scp> -Homoserine Lactone Quorum-Quenching Enzymes. Applied and Environmental Microbiology, 2016, 82, 4145-4154.	3.1	11
385	NewProt – a protein engineering portal. Protein Engineering, Design and Selection, 2017, 30, 441-447.	2.1	11
386	Specificity and mechanism of carbohydrate demethylation by cytochrome P450 monooxygenases. Biochemical Journal, 2018, 475, 3875-3886.	3.7	11
387	Fettsären und Fettsärederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angewandte Chemie, 2021, 133, 20304-20326.	2.0	11
388	Enzyme Access Tunnel Engineering in Baeyerâ€Villiger Monooxygenases to Improve Oxidative Stability and Biocatalyst Performance. Advanced Synthesis and Catalysis, 2022, 364, 555-564.	4.3	11
389	A reappraisal of the enzyme lipase for removing drying-oil stains on paper. The Paper Conservator: Journal of the Institute of Paper Conservation, 1997, 21, 37-47.	0.0	10
390	Possible involvement of nonbilayer lipids in the stimulation of the activity of cytochrome P450SCC (CYP11A1) and its propensity to induce vesicle aggregation. Chemistry and Physics of Lipids, 1997, 85, 91-99.	3.2	10
391	Substrate specificity of the Î ³ -isoenzyme of recombinant pig liver esterase towards acetates of secondary alcohols. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 129-133.	1.8	10
392	Enzyme-catalyzed hydrolysis of 18-methyl eicosanoic acid-cysteine thioester. European Journal of Lipid Science and Technology, 2003, 105, 627-632.	1.5	10
393	Eine Hochdurchsatz-Screeningmethode zur Bestimmung der SyntheseaktivitĤvon Hydrolasen. Angewandte Chemie, 2003, 115, 1449-1451.	2.0	10
394	Phospholipases Used in Lipid Transformations. , 2005, , 217-262.		10
395	Identification of pig liver esterase variants by tandem mass spectroscopy analysis and their characterization. Applied Microbiology and Biotechnology, 2007, 76, 853-859.	3.6	10
396	A potential high-throughput method for the determination of lipase activity by potentiometric flow injection titrations. Analytica Chimica Acta, 2008, 610, 44-49.	5.4	10

#	Article	IF	CITATIONS
397	<i>Bacillus subtilis</i> Esterase (BS2) and its Double Mutant Have Different Selectivity in the Removal of Carboxyl Protecting Groups. Advanced Synthesis and Catalysis, 2009, 351, 2325-2332.	4.3	10
398	Highlights in Biocatalysis. ChemCatChem, 2010, 2, 879-880.	3.7	10
399	Engineering the substrate-binding domain of an esterase enhances its hydrolytic activity toward fatty acid esters. Process Biochemistry, 2014, 49, 2101-2106.	3.7	10
400	A selection assay for haloalkane dehalogenase activity based on toxic substrates. Applied Microbiology and Biotechnology, 2015, 99, 8955-8962.	3.6	10
401	Specific Residues Expand the Substrate Scope and Enhance the Regioselectivity of a Plant O â€Methyltransferase. ChemCatChem, 2019, 11, 3227-3233.	3.7	10
402	Editorial: Insights into lipid biotransformation. European Journal of Lipid Science and Technology, 2003, 105, 561-561.	1.5	9
403	Lipase-catalyzed acidolysis and phospholipase D-catalyzed transphosphatidylation of phosphocholine. European Journal of Lipid Science and Technology, 2004, 106, 665-670.	1.5	9
404	Lipase-Catalyzed Synthesis of Structured Triacylglycerols Containing Polyunsaturated Fatty Acids - Monitoring of the Reaction and Increasing the Yield. , 2005, , 148-169.		9
405	Functional expression of porcine aminoacylase 1 in E. coli using a codon optimized synthetic gene and molecular chaperones. Applied Microbiology and Biotechnology, 2008, 81, 721-729.	3.6	9
406	Asymmetric synthesis of cis-3,5-diacetoxycyclopent-1-ene using metagenome-derived hydrolases. Tetrahedron: Asymmetry, 2008, 19, 730-732.	1.8	9
407	Identification of novel esterases for the synthesis of sterically demanding chiral alcohols by sequence-structure guided genome mining. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 88-94.	1.8	9
408	Crystallization and preliminary X-ray diffraction studies of the (<i>R</i>)-selective amine transaminase from <i>Aspergillus fumigatus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1415-1417.	0.7	9
409	A highâ€ŧhroughput assay for the determination of acyltransferase activity of lipase CALâ€A. European Journal of Lipid Science and Technology, 2014, 116, 232-236.	1.5	9
410	Multiple States of Nitrile Hydratase from <i>Rhodococcus equi</i> TG328-2: Structural and Mechanistic Insights from Electron Paramagnetic Resonance and Density Functional Theory Studies. Biochemistry, 2017, 56, 3068-3077.	2.5	9
411	An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation. ChemCatChem, 2020, 12, 2032-2039.	3.7	9
412	Influence of Substrate Binding Residues on the Substrate Scope and Regioselectivity of a Plant O â€Methyltransferase against Flavonoids. ChemCatChem, 2020, 12, 3721-3727.	3.7	9
413	One-Pot Simple Methodology for Cassette Randomization and Recombination for Focused Directed Evolution (OSCARR). Methods in Molecular Biology, 2014, 1179, 207-212.	0.9	9
414	Highly sensitive trilayer piezoelectric odor sensor. Analytica Chimica Acta, 1999, 387, 39-45.	5.4	8

#	Article	IF	CITATIONS
415	Modification of Oils and Fats by Lipase-Catalyzed Interesterification: Aspects of Process Engineering. , 2005, , 190-215.		8
416	Comparison of differently modifiedPseudomonascepacialipases in enantioselective preparation of a chiral alcohol for agrochemical use. Biocatalysis and Biotransformation, 2005, 23, 415-422.	2.0	8
417	The First Artificial Cell—A Revolutionary Step in Synthetic Biology?. Angewandte Chemie - International Edition, 2010, 49, 5228-5230.	13.8	8
418	Increasing the synthesis/hydrolysis ratio of aminoacylase 1 by site-directed mutagenesis. Biochimie, 2010, 92, 102-109.	2.6	8
419	Strikt anaerobe Batch-Kultivierung vonEubacterium ramulusin einem neuartigen Einweg-Beutelreaktorsystem. Chemie-Ingenieur-Technik, 2011, 83, 2147-2152.	0.8	8
420	Lipase-catalyzed transesterification to remove saturated MAG from biodiesel. European Journal of Lipid Science and Technology, 2012, 114, 875-879.	1.5	8
421	Enhancement of Promiscuous Amidase Activity of a <i>Bacillus subtilis</i> Esterase by Formation of a ï€â€"Ĩ€ Network. ChemCatChem, 2014, 6, 1015-1020.	3.7	8
422	Recombinant Pig Liver Esterase-Catalyzed Synthesis of (1 <i>S</i> ,4 <i>R</i>)-4-Hydroxy-2-cyclopentenyl Acetate Combined with Subsequent Enantioselective Crystallization. Organic Process Research and Development, 2016, 20, 1258-1264.	2.7	8
423	Asymmetric synthesis of serinol-monoesters catalyzed by amine transaminases. Tetrahedron: Asymmetry, 2017, 28, 1183-1187.	1.8	8
424	Enzymes in Lipid Modification: An Overview. , 2018, , 1-9.		8
425	Protein Engineering of the Progesterone Hydroxylating P450â€Monooxygenase CYP17A1 Alters Its Regioselectivity. ChemBioChem, 2018, 19, 1954-1958.	2.6	8
426	Enhancement of Lipase CALâ€A Selectivity by Protein Engineering for the Hydrolysis of Erucic Acid from Crambe Oil. European Journal of Lipid Science and Technology, 2020, 122, 1900115.	1.5	8
427	Rational Design for Enhanced Acyltransferase Activity in Water Catalyzed by the Pyrobaculum calidifontis VA1 Esterase. Microorganisms, 2021, 9, 1790.	3.6	8
428	A new carbohydrate-active oligosaccharide dehydratase is involved in the degradation of ulvan. Journal of Biological Chemistry, 2021, 297, 101210.	3.4	8
429	Discovery of Novel Tyrosine Ammonia Lyases for the Enzymatic Synthesis of <i>p</i> â€Coumaric Acid. ChemBioChem, 2022, 23, .	2.6	8
430	Determination of peracid and putative enzymatic peracid formation by an easy colorimetric assay. Analytica Chimica Acta, 1999, 378, 293-298.	5.4	7
431	A microtiter plate assay for the determination of the synthetic activity of protease. Analytical Biochemistry, 2004, 333, 193-195.	2.4	7
432	Production of Functional Lipids Containing Polyunsaturated Fatty Acids with Lipase. , 2005, , 128-147.		7

#	Article	IF	CITATIONS
433	Deep Sea Mining for Unique Biocatalysts. Chemistry and Biology, 2005, 12, 859-860.	6.0	7
434	Kinetic resolution of glyceraldehyde using an aldehyde dehydrogenase from Deinococcus geothermalis DSM 11300 combined with electrochemical cofactor recycling. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 144-150.	1.8	7
435	Application of medium engineering in the synthesis of structured triacylglycerols from evening primrose oil (<i>Oenothera biennis</i> L.). European Journal of Lipid Science and Technology, 2013, 115, 405-412.	1.5	7
436	Protein Engineering as a Tool for the Development of Novel Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, 2013, 137, 25-40.	1.1	7
437	Application of novel High Molecular Weight amine donors in chiral amine synthesis facilitates integrated downstream processing and provides in situ product recovery opportunities. Process Biochemistry, 2019, 80, 17-25.	3.7	7
438	Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functionalâ€Group Diversity for Enzyme Engineering. Chemistry - A European Journal, 2020, 26, 12338-12342.	3.3	7
439	LuxAB-Based Microbial Cell Factories for the Sensing, Manufacturing and Transformation of Industrial Aldehydes. Catalysts, 2021, 11, 953.	3.5	7
440	Biotechnological Production and Sensory Evaluation of ω1-Unsaturated Aldehydes. Journal of Agricultural and Food Chemistry, 2021, 69, 345-353.	5.2	7
441	Lipase-catalyzed highly enantioselective kinetic resolution of racemic α-hydroxy butenolides. Tetrahedron: Asymmetry, 2004, 15, 2871-2874.	1.8	6
442	Screens for Active and Stereoselective Hydrolytic Enzymes. Methods in Molecular Biology, 2010, 668, 169-176.	0.9	6
443	Biokatalyse: ein erfolgreicher Blick über den Tellerrand. Angewandte Chemie, 2016, 128, 4446-4447.	2.0	6
444	A directed mutational approach demonstrates that a putative linoleate isomerase fromLactobacillus acidophilusdoes not hydrate or isomerize linoleic acid. European Journal of Lipid Science and Technology, 2016, 118, 841-848.	1.5	6
445	Enzymatically Modified Shea Butter and Palm Kernel Oil as Potential Lipid Drug Delivery Matrices. European Journal of Lipid Science and Technology, 2018, 120, 1700332.	1.5	6
446	An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade. Applied Microbiology and Biotechnology, 2021, 105, 4189-4197.	3.6	6
447	Directed evolution of an amine transaminase for the synthesis of an Apremilast intermediate via kinetic resolution. Bioorganic and Medicinal Chemistry, 2021, 43, 116271.	3.0	6
448	Efficient Siteâ€5elective Immobilization of Aldehydeâ€Tagged Peptides and Proteins by Knoevenagel Ligation. ChemCatChem, 2022, 14, .	3.7	6
449	Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem, 2022, 14, .	3.7	6
450	Recovery of Hydroxytyrosol from Olive Mill Wastewater Using the Promiscuous Hydrolase/Acyltransferase PestE. ChemBioChem, 2022, 23, .	2.6	6

#	Article	IF	CITATIONS
451	Application of enantioselective capillary gas chromatography in lipase-catalysed transesterification reactions in organic media. Journal of Chromatography A, 1992, 606, 288-290.	3.7	5
452	Lipase-catalyzed Kinetic Resolution of 3-Hydroxy Esters: Optimization, Batch, and Continuous Reactions. Annals of the New York Academy of Sciences, 1995, 750, 215-221.	3.8	5
453	An assay system for the detection of phospholipase C activity. European Journal of Lipid Science and Technology, 2003, 105, 633-637.	1.5	5
454	A GFP-based assay for the determination of hydrolytic activity and substrate specificity of subtilisins under washing conditions. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 74-77.	1.8	5
455	Enrichment of Lipids with EPA and DHA by Lipase. , 2005, , 170-189.		5
456	Modulation of Infectivity in Phage Display as a Tool to Determine the Substrate Specificity of Proteases. ChemBioChem, 2006, 7, 965-970.	2.6	5
457	Toxoid construction of AsaP1, a lethal toxic aspzincin metalloendopeptidase of Aeromonas salmonicida subsp. achromogenes, and studies of its activity and processing. Veterinary Microbiology, 2013, 162, 687-694.	1.9	5
458	Editorial overview: Chemical biotechnology: Interdisciplinary concepts for modern biotechnological production of biochemicals and biofuels. Current Opinion in Biotechnology, 2015, 35, 133-134.	6.6	5
459	Normalized Screening of Protein Engineering Libraries by Split-GFP Crude Cell Extract Quantification. Methods in Molecular Biology, 2018, 1685, 157-170.	0.9	5
460	Enrichment of Erucic and Gondoic Fatty Acids fromCrambeandCamelinaOils Catalyzed byGeotrichum candidumLipases I and II. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1327-1335.	1.9	5
461	Oneâ€Pot Bioconversion of <scp>l</scp> â€Arabinose to <scp>l</scp> â€Ribulose in an Enzymatic Cascade. Angewandte Chemie, 2019, 131, 2450-2454.	2.0	5
462	Promiscuous Dehalogenase Activity of the Epoxide Hydrolase CorEH from <i>Corynebacterium</i> sp. C12. ACS Catalysis, 2021, 11, 6113-6120.	11.2	5
463	Recombinant <scp>l</scp> â€Amino Acid Oxidase with Broad Substrate Spectrum for Coâ€substrate Recycling in (<i>S</i>)â€Selective Transaminaseâ€Catalyzed Kinetic Resolutions. ChemBioChem, 2022, 23, .	2.6	5
464	Application of Vinyl Esters for the Lipase-catalyzed High-Yield Synthesis of Monoacylglycerols. Annals of the New York Academy of Sciences, 1996, 799, 757-761.	3.8	4
465	Fractionation of Fatty Acids and Other Lipids Using Lipases. , 2005, , 23-45.		4
466	Fatty Acid Hydroxylations Using P450 Monooxygenases. , 2005, , 394-414.		4
467	Application of Lipoxygenases and Related Enzymes for the Preparation of Oxygenated Lipids. , 2005, , 307-336.		4
468	An Investigation of the Interaction of Coâ€Solvent with Substrates in the Pig Liver Esteraseâ€Catalyzed Hydrolysis of Malonate Esters. ChemCatChem, 2015, 7, 3179-3185.	3.7	4

#	Article	IF	CITATIONS
469	Evolving Enzymes for Biocatalysis. , 2016, , 1-17.		4
470	Structural Basis for Phospholyase Activity of a Classâ€III Transaminase Homologue. ChemBioChem, 2016, 17, 2308-2311.	2.6	4
471	Diastereoselective Hydrolysis of Branched Malonate Diesters by Porcine Liver Esterase: Synthesis of 5â€Benzylâ€Substituted C ^α â€Methylâ€Î²â€proline and Catalytic Evaluation. European Journal of Organic Chemistry, 2017, 2017, 3009-3016.	2.4	4
472	Bioinformatic analysis of fold-type III PLP-dependent enzymes discovers multimeric racemases. Applied Microbiology and Biotechnology, 2017, 101, 1499-1507.	3.6	4
473	Kinetics Modeling of a Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Coupled Enzymes. Organic Process Research and Development, 2021, 25, 411-420.	2.7	4
474	Two novel cyanobacterial α-dioxygenases for the biosynthesis of fatty aldehydes. Applied Microbiology and Biotechnology, 2022, 106, 197-210.	3.6	4
475	Enzyme cascade converting cyclohexanol into εâ€caprolactone coupled with NADPH recycling using surface displayed alcohol dehydrogenase and cyclohexanone monooxygenase on <i>E. coli</i> . Microbial Biotechnology, 2022, 15, 2235-2249.	4.2	4
476	Finding enzymatic gold on silver surfaces. Nature Biotechnology, 2004, 22, 1098-1099.	17.5	3
477	Lipase-Catalyzed Synthesis of Regioisomerically Pure Mono- and Diglycerides. , 2005, , 100-115.		3
478	Recovery of choline oxidase activity by in vitro recombination of individual segments. Applied Microbiology and Biotechnology, 2008, 81, 275-282.	3.6	3
479	Gerichtete Evolution und rationales Design. Maßgeschneiderte Enzyme. Chemie in Unserer Zeit, 2009, 43, 132-142.	0.1	3
480	Combined Success for Efficient Catalysis. ChemCatChem, 2009, 1, 5-5.	3.7	3
481	Crystallization and preliminary X-ray diffraction studies of the putative haloalkane dehalogenase DppA fromPlesiocystis pacificaSIR-I. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 828-830.	0.7	3
482	Plasmagestützte Immobilisierung von Enzymen. Nachrichten Aus Der Chemie, 2011, 59, 1147-1149.	0.0	3
483	Can synthetic biology and metabolic engineering contribute to the microbial production of lipids and oleochemicals?. European Journal of Lipid Science and Technology, 2011, 113, 1075-1076.	1.5	3
484	Construction of <i>Aeromonas salmonicida</i> subsp. <i>achromogenes</i> AsaP1â€ŧoxoid strains and study of their ability to induce immunity in Arctic char, <i>Salvelinus alpinus</i> L. Journal of Fish Diseases, 2015, 38, 891-900.	1.9	3
485	Highly efficient and easy protease-mediated protein purification. Applied Microbiology and Biotechnology, 2016, 100, 1945-1953.	3.6	3
486	A Microtiter Plate-Based Assay to Screen for Active and Stereoselective Hydrolytic Enzymes in Enzyme Libraries. Methods in Molecular Biology, 2017, 1539, 197-204.	0.9	3

#	Article	IF	CITATIONS
487	Jeffamine® EDâ€600: a polyether amine donor for enzymatic transamination in organic solvent/solventâ€free medium with membraneâ€assisted product extraction. Journal of Chemical Technology and Biotechnology, 2020, 95, 604-613.	3.2	3
488	Threeâ€liquidâ€phase Spinning Reactor for the Transaminaseâ€catalyzed Synthesis and Recovery of a Chiral Amine. ChemCatChem, 2020, 12, 1288-1291.	3.7	3
489	Droplet microfluidics: From simple activity screening to sophisticated kinetics. CheM, 2021, 7, 835-838.	11.7	3
490	Entdeckung neuer bakterieller Chalconisomerasen durch eine Sequenzâ€6trukturâ€Funktionsâ€Evolutionsâ€6trategie für die enzymatische Synthese von (S)â€Flavanonen. Angewandte Chemie, 2021, 133, 17011-17016.	2.0	3
491	Strategies for Improving the Lipase-Catalyzed Preparation of Chiral Compounds. , 2000, , 90-109.		3
492	αâ€Dioxygenases (αâ€DOXs): Promising biocatalysts for the environmentally friendly production of aroma compounds. ChemBioChem, 2022, , .	2.6	3
493	Application of Pig Liver Esterase We thank the Konrad-Adenauer foundation (St. Augustin, Germany) for a stipend to A.M., Prof. R. D. Schmid (Institute of Technical Biochemistry, Stuttgart University) for his support and discussions, and A. Gollin for the synthesis of the acetates Angewandte Chemie -	13.8	3
494	Connecting Algal Polysaccharide Degradation to Formaldehyde Detoxification. ChemBioChem, 2022, 23, .	2.6	3
495	Lipase-Catalyzed Peroxy Fatty Acid Generation in Lipid Oxidation. , 2005, , 116-127.		2
496	Enzymatic Conversions of Glycerophospholipids. , 2005, , 292-306.		2
497	The Exploitation of Lipase Selectivities for the Production of Acylglycerols. , 2005, , 1-22.		2
498	Preparation and Application of Immobilized Phospholipases. , 2005, , 263-291.		2
499	Properties and Applications of Lipoxygenases. , 2005, , 337-359.		2
500	Lipid Modification in Water-in-Oil Microemulsions. , 2005, , 46-69.		2
501	Enzymatic Synthesis and Modification of Glycolipids. , 2005, , 361-393.		2
502	Meeting report: Protein Design and Evolution for Biocatalysis. Biotechnology Journal, 2009, 4, 443-445.	3.5	2
503	Editorial overview: Biocatalysis and biotransformation: Riding the third wave of biocatalysis. Current Opinion in Chemical Biology, 2014, 19, v-vi.	6.1	2
504	Catalysis at the Heart of Success!. ChemCatChem, 2017, 9, 6-9.	3.7	2

#	Article	IF	CITATIONS
505	A Biocatalytic Cascade Reaction to Access a Valuable Longâ€Chain ωâ€Hydroxy Fatty Acid. ChemCatChem, 2020, 12, 4084-4089.	3.7	2
506	A chemoenzymatic cascade with the potential to feed the world and allow humans to live in space. Engineering Microbiology, 2022, 2, 100006.	4.7	2
507	Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones. International Journal of Molecular Sciences, 2022, 23, 777.	4.1	2
508	Molecular Basis of Specificity and Stereoselectivity of Microbial Lipases toward Triacylglycerols. , 2005, , 85-99.		1
509	Editorial: Protein design and evolution for biocatalysis. Biotechnology Journal, 2007, 2, 155-155.	3.5	1
510	Taking over a safe sailing boat heading to new discoveries. European Journal of Lipid Science and Technology, 2008, 110, 1-1.	1.5	1
511	Looking back into the future. European Journal of Lipid Science and Technology, 2010, 112, 153-154.	1.5	1
512	Enzymatic Cleavage of Aryl Acetates. ChemCatChem, 2016, 8, 2853-2857.	3.7	1
513	Solid-Phase Agar Plate Assay for Screening Amine Transaminases. Methods in Molecular Biology, 2018, 1685, 283-296.	0.9	1
514	(Chemo-) enzymatic cascade reactions. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2019, 74, 61-62.	1.4	1
515	Modifikation der Regioselektivitäeiner P450â€Monooxygenase ermöglicht die Synthese von Ursodeoxycholsäre durch die 7βâ€Hydroxylierung von Lithocholsäre. Angewandte Chemie, 2021, 133, 764-768.	2.0	1
516	Asymmetric Cationâ€Olefin Monocyclization by Engineered Squalene–Hopene Cyclases. Angewandte Chemie, 2021, 133, 26284.	2.0	1
517	Lipase-Catalyzed Resolution of Ibuprofen. , 2000, , 107-112.		1
518	An Enzyme Cascade Reaction for the Recovery of Hydroxytyrosol Dervatives from Olive Mill Wastewater. Chemie-Ingenieur-Technik, 0, , .	0.8	1
519	Evolutionary Generation of Enzymes with Novel Substrate Specificities. , 0, , 329-341.		0
520	Immobilizing Enzymes: How to Create More Suitable Biocatalysts ChemInform, 2003, 34, no.	0.0	0
521	White Biotechnology for lipids, fats and oils. European Journal of Lipid Science and Technology, 2005, 107, 445-446.	1.5	0
522	Catalytic Promiscuity in Biocatalysis: Using Old Enzymes to Form New Bonds and Follow New Pathways. ChemInform, 2005, 36, no.	0.0	0

UWE T BORNSCHEUER

#	Article	IF	CITATIONS
523	Enzymatic Removal of Carboxyl Protecting Groups. Part 1. Cleavage of the tert-Butyl Moiety ChemInform, 2005, 36, no.	0.0	0
524	Cloning, Mutagenesis and Biochemical Properties of a Lipase from the FungusRhizopus delemar. , 2005, , 70-84.		0
525	Enzymatic Methods. , 2006, , 315-327.		0
526	8th Euro Fed Lipid Congress Oils, Fats and Lipids: Health & Nutrition, Chemistry & Energy 21-24 November 2010, Munich, Germany. European Journal of Lipid Science and Technology, 2010, 112, n/a-n/a.	1.5	0
527	Engineering of pathways, cells and tissues. Current Opinion in Biotechnology, 2011, 22, 601-603.	6.6	0
528	Editorial: Solving the Material and Energy Challenges of the Future. ChemCatChem, 2011, 3, 619-621.	3.7	0
529	Handing over a safe sailing boat. European Journal of Lipid Science and Technology, 2016, 118, 1799-1799.	1.5	0
530	Frontispiece: A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry - A European Journal, 2017, 23, .	3.3	0
531	Evolving Enzymes for Biocatalysis. , 2017, , 271-287.		0
532	Library Growth and Protein Expression: Optimal and Reproducible Microtiter Plate Expression of Recombinant Enzymes in E. coli Using MTP Shakers. Methods in Molecular Biology, 2018, 1685, 145-156.	0.9	0
533	Entdeckung und Design promiskuitiver Acyltransferaseâ€Aktivitäin Carboxylesterasen der Familieâ€VIII. Angewandte Chemie, 2021, 133, 2041-2045.	2.0	0
534	Assay Systems for Screening or Selection of Biocatalysts. , 2003, , .		0
535	Program-Guided Design of High-Throughput Enzyme Screening Experiments and Automated Data Analysis/Evaluation. Methods in Molecular Biology, 2018, 1685, 269-282.	0.9	0

536 Titelbild: Asymmetric Cationâ€Olefin Monocyclization by Engineered Squalene–Hopene Cyclases (Angew.) Tj ETQa0 0 0 rgBT /Overloc