## Colin J Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7508363/publications.pdf Version: 2024-02-01



<u>COUNT Μυρρην</u>

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Experimental demonstration of a single-molecule electric motor. Nature Nanotechnology, 2011, 6, 625-629.                                                                        | 31.5 | 246       |
| 2  | Selective Formic Acid Dehydrogenation on Pt-Cu Single-Atom Alloys. ACS Catalysis, 2017, 7, 413-420.                                                                             | 11.2 | 143       |
| 3  | Controlling a spillover pathway with the molecular cork effect. Nature Materials, 2013, 12, 523-528.                                                                            | 27.5 | 119       |
| 4  | Molecular-Scale Perspective of Water-Catalyzed Methanol Dehydrogenation to Formaldehyde. ACS<br>Nano, 2013, 7, 6181-6187.                                                       | 14.6 | 67        |
| 5  | Atomic-scale insight into the formation, mobility and reaction of Ullmann coupling intermediates.<br>Chemical Communications, 2014, 50, 1006-1008.                              | 4.1  | 52        |
| 6  | Quantum Tunneling Enabled Self-Assembly of Hydrogen Atoms on Cu(111). ACS Nano, 2012, 6, 10115-10121.                                                                           | 14.6 | 45        |
| 7  | Microscopic View of the Active Sites for Selective Dehydrogenation of Formic Acid on Cu(111). ACS Catalysis, 2015, 5, 7371-7378.                                                | 11.2 | 42        |
| 8  | Dissociative Hydrogen Adsorption on Close-Packed Cobalt Nanoparticle Surfaces. Journal of Physical<br>Chemistry C, 2012, 116, 25868-25873.                                      | 3.1  | 35        |
| 9  | Hydrogen Dissociation, Spillover, and Desorption from Cu-Supported Co Nanoparticles. Journal of<br>Physical Chemistry Letters, 2014, 5, 3380-3385.                              | 4.6  | 34        |
| 10 | Water–Ice Analogues of Polycyclic Aromatic Hydrocarbons: Water Nanoclusters on Cu(111). Journal of the American Chemical Society, 2017, 139, 6403-6410.                         | 13.7 | 32        |
| 11 | Enhancement of low-energy electron emission in 2D radioactive films. Nature Materials, 2015, 14, 904-907.                                                                       | 27.5 | 30        |
| 12 | Regular Scanning Tunneling Microscope Tips can be Intrinsically Chiral. Physical Review Letters, 2011,<br>106, 010801.                                                          | 7.8  | 29        |
| 13 | Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces. Journal of Chemical Physics, 2014, 141, 014701.                     | 3.0  | 26        |
| 14 | Visualization of Compression and Spillover in a Coadsorbed System: Syngas on Cobalt Nanoparticles.<br>ACS Nano, 2013, 7, 4384-4392.                                             | 14.6 | 24        |
| 15 | Charge-Transfer-Induced Magic Cluster Formation of Azaborine Heterocycles on Noble Metal<br>Surfaces. Journal of Physical Chemistry C, 2016, 120, 6020-6030.                    | 3.1  | 23        |
| 16 | Controlling selectivity in the Ullmann reaction on Cu(111). Chemical Communications, 2017, 53, 7816-7819.                                                                       | 4.1  | 22        |
| 17 | The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network:<br>The example of 2-butanol. Journal of Chemical Physics, 2016, 144, 094703. | 3.0  | 19        |
| 18 | Nanoscale insight into C–C coupling on cobalt nanoparticles. Chemical Communications, 2014, 50, 10035.                                                                          | 4.1  | 15        |

Colin J Murphy

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydrogen Bonding and Chirality in Functionalized Thioether Self-Assembly. Journal of Physical<br>Chemistry C, 2012, 116, 14992-14997.                                           | 3.1  | 13        |
| 20 | Segregation of Fischer–Tropsch reactants on cobalt nanoparticle surfaces. Chemical<br>Communications, 2014, 50, 6537-6539.                                                      | 4.1  | 12        |
| 21 | Ullmann coupling mediated assembly of an electrically driven altitudinal molecular rotor. Physical<br>Chemistry Chemical Physics, 2015, 17, 31931-31937.                        | 2.8  | 11        |
| 22 | Effect of BN/CC Isosterism on the Thermodynamics of Surface and Bulk Binding:<br>1,2-Dihydro-1,2-azaborine vs Benzene. Journal of Physical Chemistry C, 2015, 119, 14624-14631. | 3.1  | 11        |
| 23 | Impact of branching on the supramolecular assembly of thioethers on Au(111). Journal of Chemical Physics, 2015, 142, 101915.                                                    | 3.0  | 10        |
| 24 | Collective effects in physisorbed molecular hydrogen onNi/Au(111). Physical Review B, 2015, 92, .                                                                               | 3.2  | 9         |
| 25 | Squeezing and stretching Pd thin films: A high-resolution STM study of Pd/Au(111) and Pd/Cu(111) bimetallics. Surface Science, 2016, 646, 1-4.                                  | 1.9  | 9         |
| 26 | Chirality at two-dimensional surfaces: A perspective from small molecule alcohol assembly on Au(111).<br>Journal of Chemical Physics, 2018, 149, 034703.                        | 3.0  | 9         |
| 27 | Controlling Molecular Switching via Chemical Functionality: Ethyl vs Methoxy Rotors. Journal of<br>Physical Chemistry C, 2019, 123, 23738-23746.                                | 3.1  | 9         |
| 28 | Development of an Electrically Driven Molecular Motor. Chemical Record, 2014, 14, 834-840.                                                                                      | 5.8  | 8         |
| 29 | Plasmonic Temperature-Programmed Desorption. Nano Letters, 2021, 21, 353-359.                                                                                                   | 9.1  | 6         |
| 30 | Atomic-Scale Picture of the Composition, Decay, and Oxidation of Two-Dimensional Radioactive Films.<br>ACS Nano, 2016, 10, 2152-2158.                                           | 14.6 | 5         |
| 31 | Visualizing and Understanding Ordered Surface Phases during the Ullmann Coupling Reaction.<br>Journal of Physical Chemistry C, 2021, 125, 7675-7685.                            | 3.1  | 2         |