Terence Kin-Wah Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7507486/publications.pdf

Version: 2024-02-01

109 papers 9,928 citations

53 h-index 97 g-index

112 all docs

112 docs citations

112 times ranked 12904 citing authors

#	Article	IF	CITATIONS
1	Cancer stem cells in hepatocellular carcinoma $\hat{a} \in \tilde{a}$ from origin to clinical implications. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 26-44.	8.2	185
2	Histone chaperone FACT complex coordinates with HIF to mediate an expeditious transcription program to adapt to poorly oxygenated cancers. Cell Reports, 2022, 38, 110304.	2.9	6
3	Preclinical mouse models of hepatocellular carcinoma: An overview and update. Experimental Cell Research, 2022, 412, 113042.	1.2	4
4	Patient plgR-enriched extracellular vesicles drive cancer stemness, tumorigenesis and metastasis in hepatocellular carcinoma. Journal of Hepatology, 2022, 76, 883-895.	1.8	32
5	CircTUBD1: A Novel Circular RNA Molecule as a Therapeutic Target in Radiation-induced Liver Fibrosis. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	0.7	1
6	Network-Pharmacology-Based Study on Active Phytochemicals and Molecular Mechanism of Cnidium monnieri in Treating Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2022, 23, 5400.	1.8	11
7	Caspase-3–Induced Activation of SREBP2 Drives Drug Resistance via Promotion of Cholesterol Biosynthesis in Hepatocellular Carcinoma. Cancer Research, 2022, 82, 3102-3115.	0.4	22
8	Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma. Journal of Hepatology, 2021, 74, 838-849.	1.8	53
9	PRMT6 deficiency induces autophagy in hostile microenvironments of hepatocellular carcinoma tumors by regulating BAG5-associated HSC70 stability. Cancer Letters, 2021, 501, 247-262.	3.2	18
10	RSK2-inactivating mutations potentiate MAPK signaling and support cholesterol metabolism in hepatocellular carcinoma. Journal of Hepatology, 2021, 74, 360-371.	1.8	30
11	The interplay of UBE2T and Mule in regulating Wnt/ \hat{l}^2 -catenin activation to promote hepatocellular carcinoma progression. Cell Death and Disease, 2021, 12, 148.	2.7	23
12	EPHB2 Activates \hat{l}^2 -Catenin to Enhance Cancer Stem Cell Properties and Drive Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Research, 2021, 81, 3229-3240.	0.4	59
13	Cancerâ€Associated Fibroblasts: Orchestrating the Crosstalk Between Liver Cancer Cells and Neutrophils Through the Cardiotrophinâ€Like Cytokine Factor 1–Mediated Chemokine (Câ€X motif) Ligand 6/TGFâ€Î² Axis. Hepatology, 2021, 73, 1631-1633.	3.6	6
14	Hampering Stromal Cells in the Tumor Microenvironment as a Therapeutic Strategy to Destem Cancer Stem Cells. Cancers, 2021, 13, 3191.	1.7	8
15	Glucose deprivation–induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma. Journal of Clinical Investigation, 2021, 131, .	3.9	42
16	Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Frontiers in Cell and Developmental Biology, 2021, 9, 692940.	1.8	55
17	Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. Cell Reports, 2021, 36, 109617.	2.9	18
18	UBE2T: A new molecular regulator of cancer stemness in hepatocellular carcinoma. Oncotarget, 2021, 12, 1727-1728.	0.8	1

#	Article	IF	Citations
19	FSTL1 Secreted by Activated Fibroblasts Promotes Hepatocellular Carcinoma Metastasis and Stemness. Cancer Research, 2021, 81, 5692-5705.	0.4	48
20	Chemotherapyâ€Enriched THBS2â€Deficient Cancer Stem Cells Drive Hepatocarcinogenesis through Matrix Softness Induced Histone H3 Modifications. Advanced Science, 2021, 8, 2002483.	5.6	24
21	CRAF Methylation by PRMT6 Regulates Aerobic Glycolysis–Driven Hepatocarcinogenesis via ERKâ€Dependent PKM2 Nuclear Relocalization and Activation. Hepatology, 2020, 71, 1279-1296.	3.6	71
22	Overriding Adaptive Resistance to Sorafenib Through Combination Therapy With Src Homology 2 Domain–Containing Phosphatase 2 Blockade in Hepatocellular Carcinoma. Hepatology, 2020, 72, 155-168.	3.6	58
23	Deficiency in Embryonic Stem Cell Marker Reduced Expression 1 Activates Mitogenâ€Activated Protein Kinase Kinase 6–Dependent p38 Mitogenâ€Activated Protein Kinase Signaling to Drive Hepatocarcinogenesis. Hepatology, 2020, 72, 183-197.	3.6	18
24	Nidogen 1â€Enriched Extracellular Vesicles Facilitate Extrahepatic Metastasis of Liver Cancer by Activating Pulmonary Fibroblasts to Secrete Tumor Necrosis Factor Receptor 1. Advanced Science, 2020, 7, 2002157.	5.6	50
25	The Pivotal Role of the Dysregulation of Cholesterol Homeostasis in Cancer: Implications for Therapeutic Targets. Cancers, 2020, 12, 1410.	1.7	26
26	Antiâ€tumour effects of <scp>PIM</scp> kinase inhibition on progression and chemoresistance of hepatocellular carcinoma. Journal of Pathology, 2020, 252, 65-76.	2.1	9
27	MAP9/ERCC3 signaling cascade: A new insight on understanding the chromosomal instability in hepatocellular carcinoma. EBioMedicine, 2020, 54, 102709.	2.7	2
28	NRF2/SHH signaling cascade promotes tumor-initiating cell lineage and drug resistance in hepatocellular carcinoma. Cancer Letters, 2020, 476, 48-56.	3.2	37
29	Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Letters, 2019, 459, 176-185.	3.2	129
30	Emerging role of fatty acid binding proteins in cancer pathogenesis. Histology and Histopathology, 2019, 34, 1-12.	0.5	9
31	IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma. Cancer Research, 2018, 78, 2332-2342.	0.4	93
32	Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/ \hat{l}^2 -catenin pathway. Cell Death and Differentiation, 2018, 25, 1426-1441.	5.0	47
33	PRMT6 Regulates RAS/RAF Binding and MEK/ERK-Mediated Cancer Stemness Activities in Hepatocellular Carcinoma through CRAF Methylation. Cell Reports, 2018, 25, 690-701.e8.	2.9	76
34	Efficacy of annexin A3 blockade in sensitizing hepatocellular carcinoma to sorafenib and regorafenib. Journal of Hepatology, 2018, 69, 826-839.	1.8	89
35	SENP1 promotes hypoxia-induced cancer stemness by HIF-1 \hat{l} ± deSUMOylation and SENP1/HIF-1 \hat{l} ± positive feedback loop. Gut, 2017, 66, 2149-2159.	6.1	141
36	Notch Inhibitor PF-03084014 Inhibits Hepatocellular Carcinoma Growth and Metastasis via Suppression of Cancer Stemness due to Reduced Activation of Notch1–Stat3. Molecular Cancer Therapeutics, 2017, 16, 1531-1543.	1.9	64

#	Article	IF	Citations
37	The CCCTC-binding factor (CTCF)-forkhead box protein M1 axis regulates tumour growth and metastasis in hepatocellular carcinoma. Journal of Pathology, 2017, 243, 418-430.	2.1	29
38	FSTL1 Promotes Metastasis and Chemoresistance in Esophageal Squamous Cell Carcinoma through NFήB–BMP Signaling Cross-talk. Cancer Research, 2017, 77, 5886-5899.	0.4	48
39	Chronic inflammationâ€elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance. Hepatology, 2017, 66, 1934-1951.	3.6	96
40	Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation. Journal of Hepatology, 2017, 67, 979-990.	1.8	124
41	TP53INP1 Downregulation Activates a p73-Dependent DUSP10/ERK Signaling Pathway to Promote Metastasis of Hepatocellular Carcinoma. Cancer Research, 2017, 77, 4602-4612.	0.4	39
42	Shp2 promotes liver cancer stem cell expansion by augmenting $\hat{l}^2 \hat{a} \in \epsilon$ atenin signaling and predicts chemotherapeutic response of patients. Hepatology, 2017, 65, 1566-1580.	3.6	127
43	Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications. Stem Cells International, 2017, 2017, 1-11.	1.2	132
44	C-terminal truncated hepatitis B virus X protein regulates tumorigenicity, self-renewal and drug resistance via STAT3/Nanog signaling pathway. Oncotarget, 2017, 8, 23507-23516.	0.8	29
45	Dishevelled-3 phosphorylation is governed by HIPK2/PP1Cî±/ITCH axis and the non-phosphorylated form promotes cancer stemness via LGR5 in hepatocellular carcinoma. Oncotarget, 2017, 8, 39430-39442.	0.8	6
46	Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/ \hat{l}^2 -catenin signaling. Oncotarget, 2016, 7, 29371-29386.	0.8	70
47	What are the options for hepatocellular carcinoma patients who progress under sorafenib?. Hepatic Oncology, 2016, 3, 105-108.	4.2	1
48	Cancer-Associated Fibroblasts Regulate Tumor-Initiating Cell Plasticity in Hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Reports, 2016, 15, 1175-1189.	2.9	253
49	Octamer 4/microRNAâ€1246 signaling axis drives Wnt/βâ€catenin activation in liver cancer stem cells. Hepatology, 2016, 64, 2062-2076.	3.6	153
50	Antiâ€ <scp>CD</scp> 47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma. Liver International, 2016, 36, 737-745.	1.9	62
51	Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget, 2016, 7, 2572-2584.	0.8	21
52	Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop. Oncotarget, 2016, 7, 4939-4948.	0.8	24
53	Nuclear factor kappa B–mediated CD47 upâ€regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology, 2015, 62, 534-545.	3.6	149
54	ANXA3/JNK Signaling Promotes Self-Renewal and Tumor Growth, and Its Blockade Provides a Therapeutic Target for Hepatocellular Carcinoma. Stem Cell Reports, 2015, 5, 45-59.	2.3	74

#	Article	IF	CITATIONS
55	Phosphorylation of Nucleophosmin at Threonine 234/237 is associated with HCC metastasis. Oncotarget, 2015, 6, 43483-43495.	0.8	12
56	Polysaccharopeptide enhanced the anti-cancer effect of gamma-tocotrienol through activation of AMPK. BMC Complementary and Alternative Medicine, 2014, 14, 303.	3.7	16
57	Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology, 2014, 60, 179-191.	3.6	167
58	Regulatory role of miR-142-3p on the functional hepatic cancer stem cell marker CD133. Oncotarget, 2014, 5, 5725-5735.	0.8	65
59	Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Letters, 2013, 338, 101-109.	3.2	52
60	Caveolinâ€1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. Journal of Pathology, 2012, 226, 645-653.	2.1	72
61	CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology, 2012, 55, 807-820.	3.6	206
62	CD24+ Liver Tumor-Initiating Cells Drive Self-Renewal and Tumor Initiation through STAT3-Mediated NANOG Regulation. Cell Stem Cell, 2011, 9, 50-63.	5.2	545
63	Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology, 2011, 53, 160-170.	3.6	91
64	Gammaâ€tocotrienol as an effective agent in targeting prostate cancer stem cellâ€like population. International Journal of Cancer, 2011, 128, 2182-2191.	2.3	76
65	MicroRNA-616 Induces Androgen-Independent Growth of Prostate Cancer Cells by Suppressing Expression of Tissue Factor Pathway Inhibitor TFPI-2. Cancer Research, 2011, 71, 583-592.	0.4	80
66	An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers. Journal of Clinical Investigation, 2011, 121, 880-892.	3.9	61
67	Chemopreventive Effect of PSP Through Targeting of Prostate Cancer Stem Cell-Like Population. PLoS ONE, 2011, 6, e19804.	1.1	40
68	Suppression of tumorigenesis and metastasis of hepatocellular carcinoma by shRNA interference targeting on homeoprotein Six1. International Journal of Cancer, 2010, 127, 859-872.	2.3	37
69	miR-130b Promotes CD133+ Liver Tumor-Initiating Cell Growth and Self-Renewal via Tumor Protein 53-Induced Nuclear Protein 1. Cell Stem Cell, 2010, 7, 694-707.	5.2	368
70	Targeting cadherin-17 inactivates Wnt signaling and inhibits tumor growth in liver carcinoma. Hepatology, 2009, 50, 1453-1463.	3.6	107
71	Liver cancer stem cells: implications for a new therapeutic target. Liver International, 2009, 29, 955-965.	1.9	75
72	CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 2008, 27, 1749-1758.	2.6	720

#	Article	IF	Citations
73	Id-1 Induces Proteasome-dependent Degradation of the HBX Protein. Journal of Molecular Biology, 2008, 382, 34-43.	2.0	29
74	Aldehyde Dehydrogenase Discriminates the CD133 Liver Cancer Stem Cell Populations. Molecular Cancer Research, 2008, 6, 1146-1153.	1.5	427
75	Identification of a Novel Inhibitor of Differentiation-1 (ID-1) Binding Partner, Caveolin-1, and Its Role in Epithelial-Mesenchymal Transition and Resistance to Apoptosis in Prostate Cancer Cells. Journal of Biological Chemistry, 2007, 282, 33284-33294.	1.6	73
76	Lupeol Suppresses Cisplatin-Induced Nuclear Factor-κB Activation in Head and Neck Squamous Cell Carcinoma and Inhibits Local Invasion and Nodal Metastasis in an Orthotopic Nude Mouse Model. Cancer Research, 2007, 67, 8800-8809.	0.4	119
77	Fascin over-expression is associated with aggressiveness of oral squamous cell carcinoma. Cancer Letters, 2007, 254, 308-315.	3.2	47
78	Clinicopathological significance of missing in metastasis B expression in hepatocellular carcinoma. Human Pathology, 2007, 38, 1201-1206.	1.1	43
79	Identification and Characterization of Tumorigenic Liver Cancer Stem/Progenitor Cells. Gastroenterology, 2007, 132, 2542-2556.	0.6	1,096
80	Ischemia-reperfusion of small liver remnant promotes liver tumor growth and metastases—Activation of cell invasion and migration pathways. Liver Transplantation, 2007, 13, 1669-1677.	1.3	109
81	The significance of proline-rich tyrosine kinase2 (Pyk2) on hepatocellular carcinoma progression and recurrence. British Journal of Cancer, 2007, 97, 50-57.	2.9	60
82	Twist Overexpression Correlates with Hepatocellular Carcinoma Metastasis through Induction of Epithelial-Mesenchymal Transition. Clinical Cancer Research, 2006, 12, 5369-5376.	3.2	378
83	FTY720, a fungus metabolite, inhibits invasion ability of androgen-independent prostate cancer cells through inactivation of RhoA-GTPase. Cancer Letters, 2006, 233, 36-47.	3.2	52
84	Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma. British Journal of Cancer, 2006, 95, 1050-1055.	2.9	81
85	Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transplantation, 2006, 12, 621-627.	1.3	81
86	Rac Activation Is Associated with Hepatocellular Carcinoma Metastasis by Up-regulation of Vascular Endothelial Growth Factor Expression. Clinical Cancer Research, 2006, 12, 5082-5089.	3.2	40
87	Regulation of Angiogenesis by Id-1 through Hypoxia-Inducible Factor-1α–Mediated Vascular Endothelial Growth Factor Up-regulation in Hepatocellular Carcinoma. Clinical Cancer Research, 2006, 12, 6910-6919.	3.2	62
88	Signal Transducers and Activators of Transcription 5b Activation Enhances Hepatocellular Carcinoma Aggressiveness through Induction of Epithelial-Mesenchymal Transition. Cancer Research, 2006, 66, 9948-9956.	0.4	105
89	Effects of a novel immunomodulating agent, FTY720, on tumor growth and angiogenesis in hepatocellular carcinoma. Molecular Cancer Therapeutics, 2005, 4, 1430-1438.	1.9	79
90	Significance of the Rac signaling pathway in HCC cell motility: implications for a new therapeutic target. Carcinogenesis, 2005, 26, 681-687.	1.3	41

#	Article	IF	CITATIONS
91	FTY720: A Promising Agent for Treatment of Metastatic Hepatocellular Carcinoma. Clinical Cancer Research, 2005, 11, 8458-8466.	3.2	90
92	FTY720 Attenuates Hepatic Ischemia-Reperfusion Injury in Normal and Cirrhotic Livers. American Journal of Transplantation, 2005, 5, 40-49.	2.6	74
93	FTY720 induces apoptosis of human hepatoma cell lines through PI3-K-mediated Akt dephosphorylation. Carcinogenesis, 2004, 25, 2397-2405.	1.3	77
94	PIN1 overexpression and \hat{l}^2 -catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene, 2004, 23, 4182-4186.	2.6	101
95	Attenuation of Small-for-Size Liver Graft Injury by FTY720: Significance of Cell-survival Akt Signaling Pathway. American Journal of Transplantation, 2004, 4, 1399-1407.	2.6	37
96	Insulin in UW solution exacerbates hepatic ischemia / reperfusion injury by energy depletion through the IRS-2 / SREBP-1c pathway. Liver Transplantation, 2004, 10, 1173-1182.	1.3	17
97	FK 409 Ameliorates Small-for-Size Liver Graft Injury by Attenuation of Portal Hypertension and Down-Regulation of Egr-1 Pathway. Annals of Surgery, 2004, 240, 159-168.	2.1	64
98	Disruption of p53-p21/WAF1 cell cycle pathway contributes to progression and worse clinical outcome of hepatocellular carcinoma. Oncology Reports, 2004, 12, 25-31.	1.2	12
99	Intragraft gene expression profiles by cDNA microarray in small-for-size liver grafts. Liver Transplantation, 2003, 9, 425-432.	1.3	60
100	Over-expression of Id-1 induces cell proliferation in hepatocellular carcinoma through inactivation of p16INK4a/RB pathway. Carcinogenesis, 2003, 24, 1729-1736.	1.3	47
101	Graft Injury in Relation to Graft Size in Right Lobe Live Donor Liver Transplantation. Annals of Surgery, 2003, 237, 256-264.	2.1	211
102	Distinct intragraft response pattern in relation to graft size in liver transplantation. Transplantation, 2003, 75, 673-678.	0.5	69
103	INSULIN IN UNIVERSITY OF WISCONSIN SOLUTION EXACERBATES THE ISCHEMIC INJURY AND DECREASES THE GRAFT SURVIVAL RATE IN RAT LIVER TRANSPLANTATION. Transplantation, 2003, 76, 44-49.	0.5	13
104	Gene expression profiling by cDNA array in human hepatoma cell line in response to cisplatin treatment. Life Sciences, 2002, 70, 1677-1690.	2.0	20
105	Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemotherapy and Pharmacology, 2002, 49, 78-86.	1.1	122
106	Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene, 2002, 21, 8498-8505.	2.6	93
107	Gene delivery using a receptor-mediated gene transfer system targeted to hepatocellular carcinoma cells. International Journal of Cancer, 2001, 93, 393-400.	2.3	30
108	RhoE/ROCK2 regulates chemoresistance through NF-κB/IL-6/ STAT3 signaling in hepatocellular carcinoma. Oncotarget, 0, 7, 41445-41459.	0.8	30

TERENCE KIN-WAH LEE

#	Article	IF	CITATIONS
109	Targeting protein kinases in cancer stem cells. Essays in Biochemistry, 0, , .	2.1	2