Xiaoshuang Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7507471/publications.pdf

Version: 2024-02-01

623734 794594 19 923 14 19 citations g-index h-index papers 19 19 19 786 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corrosion Science, 2015, 90, 284-295.	6.6	272
2	Amino acids modified konjac glucomannan as green corrosion inhibitors for mild steel in HCl solution. Carbohydrate Polymers, 2018, 181, 191-199.	10.2	149
3	Inhibitory effect of konjac glucomanan on pitting corrosion of AA5052 aluminium alloy in NaCl solution. Journal of Colloid and Interface Science, 2018, 517, 52-60.	9.4	94
4	Corrosion inhibition properties of two imidazolium ionic liquids with hydrophilic tetrafluoroborate and hydrophobic hexafluorophosphate anions in acid medium. Journal of Industrial and Engineering Chemistry, 2017, 56, 234-247.	5.8	69
5	Smart coatings embedded with polydopamine-decorated layer-by-layer assembled SnO2 nanocontainers for the corrosion protection of 304 stainless steels. Journal of Colloid and Interface Science, 2020, 579, 741-753.	9.4	67
6	Theoretical prediction and experimental study of 1-Butyl-2-(4-methylphenyl)benzimidazole as a novel corrosion inhibitor for mild steel in hydrochloric acid. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51, 193-200.	5 . 3	40
7	Effect of scale inhibitors on the structure and morphology of CaCO3 crystal electrochemically deposited on TA1 alloy. Journal of Colloid and Interface Science, 2020, 562, 558-566.	9.4	36
8	Enhanced inhibitive performance of fluoro-substituted imidazolium-based ionic liquid for mild steel corrosion in hydrochloric acid at elevated temperature. Journal of Materials Science, 2018, 53, 14666-14680.	3.7	27
9	Experimental and Theoretical Studies of Carboxylic Polymers with Low Molecular Weight as Inhibitors for Calcium Carbonate Scale. Crystals, 2020, 10, 406.	2.2	26
10	Corrosion inhibition of mild steel by bromide-substituted imidazoline in hydrochloric acid. Journal of the Taiwan Institute of Chemical Engineers, 2015, 57, 167-174.	5. 3	23
11	Heterogeneous Fenton-like degradation of methyl blue using MCM-41-Fe/Al supported Mn oxides. RSC Advances, 2016, 6, 26155-26162.	3.6	20
12	Cobalt Catalyst Grafted CdSeTe Quantum Dots on Porous NiO as Photocathode for H ₂ Evolution under Visible Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 11166-11174.	6.7	18
13	Crystallization of CaCO3 in Aqueous Solutions with Extremely High Concentrations of NaCl. Crystals, 2019, 9, 647.	2.2	18
14	A ternary hybrid of Zn-doped MoS2-RGO for highly effective electrocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 599, 100-108.	9.4	15
15	A self-curing konjac glucomannan/CaCO3 coating for corrosion protection of AA5052 aluminum alloy in NaCl solution. International Journal of Biological Macromolecules, 2020, 151, 691-701.	7. 5	14
16	Experimental and theoretical studies of sodium acetyldithiocarbamate for the removal of Cu2+ and Ni2+ from aqueous solution. Journal of Colloid and Interface Science, 2020, 579, 330-339.	9.4	11
17	Green Synthesis of Novel Schiff Bases as Ecoâ€friendly Corrosion Inhibitors for Mild Steel in HydrochloricÂAcid. ChemistrySelect, 2018, 3, 12486-12494.	1.5	9
18	Experimental and theoretical insights into two fluorine-containing imidazoline Schiff base inhibitors for carbon steels in hydrochloric acid solution. Journal of Molecular Structure, 2022, 1268, 133737.	3.6	9

#	Article	IF	CITATIONS
19	Effect of the passive films on CaCO3 scale depositing on Q235 steel: Electrochemical and surface investigation. Journal of Colloid and Interface Science, 2022, 611, 172-182.	9.4	6