
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/750741/publications.pdf Version: 2024-02-01

KIM BAK IENSEN

#	Article	IF	CITATIONS
1	<i>Lrig1</i> expression identifies airway basal cells with high proliferative capacity and restricts lung squamous cell carcinoma growth. European Respiratory Journal, 2022, 59, 2000816.	6.7	3
2	In Vivo Studies Should Take Priority When Defining Mechanisms of Intestinal Crypt Morphogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1-3.	4.5	6
3	Rebuttal to: Organoid vs Mouse Model: Which is a Better Research Tool to Understand the Biologic Mechanisms of Intestinal Epithelium?. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 193.	4.5	2
4	Transplantation of intestinal organoids into a mouse model of colitis. Nature Protocols, 2022, 17, 649-671.	12.0	39
5	Mesenchymal-epithelial crosstalk shapes intestinal regionalisation via Wnt and Shh signalling. Nature Communications, 2022, 13, 715.	12.8	15
6	Tuft Cells and Their Role in Intestinal Diseases. Frontiers in Immunology, 2022, 13, 822867.	4.8	42
7	Molecular Manipulations and Intestinal Stem Cell-Derived Organoids in Inflammatory Bowel Disease. Stem Cells, 2022, 40, 447-457.	3.2	6
8	A biomechanical switch regulates the transition towards homeostasis in oesophageal epithelium. Nature Cell Biology, 2021, 23, 511-525.	10.3	29
9	Reprogramming cellular identity during intestinal regeneration. Current Opinion in Genetics and Development, 2021, 70, 40-47.	3.3	13
10	Personalized B cell response to the <i>Lactobacillus rhamnosus GG</i> probiotic in healthy human subjects: a randomized trial. Gut Microbes, 2020, 12, 1854639.	9.8	5
11	Mucosal vitamin D signaling in inflammatory bowel disease. Autoimmunity Reviews, 2020, 19, 102672.	5.8	34
12	LSD1 represses a neonatal/reparative gene program in adult intestinal epithelium. Science Advances, 2020, 6, .	10.3	18
13	A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nature Communications, 2020, 11, 6244.	12.8	20
14	Intestinal Organoids: A Tool for Modelling Diet–Microbiome–Host Interactions. Trends in Endocrinology and Metabolism, 2020, 31, 848-858.	7.1	33
15	A Semi-automated Organoid Screening Method Demonstrates Epigenetic Control of Intestinal Epithelial Differentiation. Frontiers in Cell and Developmental Biology, 2020, 8, 618552.	3.7	13
16	Tracing the cellular dynamics of sebaceous gland development in normal and perturbed states. Nature Cell Biology, 2019, 21, 924-932.	10.3	23
17	Tissue-Engineering the Intestine: The Trials before the Trials. Cell Stem Cell, 2019, 24, 855-859.	11.1	39
18	Fluorescence-based tracing of transplanted intestinal epithelial cells using confocal laser endomicroscopy. Stem Cell Research and Therapy, 2019, 10, 148.	5.5	11

#	Article	IF	CITATIONS
19	Tracing the origin of adult intestinal stem cells. Nature, 2019, 570, 107-111.	27.8	107
20	IL-17R–EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. Journal of Experimental Medicine, 2019, 216, 195-214.	8.5	82
21	Dietary Control of Skin Lipid Composition and Microbiome. Journal of Investigative Dermatology, 2018, 138, 1225-1228.	0.7	8
22	YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell, 2018, 22, 35-49.e7.	11.1	447
23	Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies. Nature Communications, 2018, 9, 1661.	12.8	78
24	Intestinal barrier integrity and inflammatory bowel disease: Stem cellâ€based approaches to regenerate the barrier. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 923-935.	2.7	48
25	Lrig1 marks a population of gastric epithelial cells capable of long-term tissue maintenance and growth in vitro. Scientific Reports, 2018, 8, 15255.	3.3	17
26	COX-2–PGE2 Signaling Impairs Intestinal Epithelial Regeneration and Associates with TNF Inhibitor Responsiveness in Ulcerative Colitis. EBioMedicine, 2018, 36, 497-507.	6.1	63
27	Inhibiting RHOA Signaling in Mice Increases Glucose Tolerance and Numbers of Enteroendocrine and Other Secretory Cells in the Intestine. Gastroenterology, 2018, 155, 1164-1176.e2.	1.3	41
28	Unconventional translation in cancer. Nature, 2017, 541, 471-472.	27.8	7
29	Isolation and In Vitro Characterization of Epidermal Stem Cells. Methods in Molecular Biology, 2017, 1553, 67-83.	0.9	6
30	Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. EMBO Journal, 2017, 36, 3029-3045.	7.8	27
31	Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nature Medicine, 2017, 23, 954-963.	30.7	210
32	Loss of PACS-2 delays regeneration in DSS-induced colitis but does not affect the <i>Apc</i> Min model of colorectal cancer. Oncotarget, 2017, 8, 108303-108315.	1.8	5
33	Stem cell heterogeneity revealed. Nature Cell Biology, 2016, 18, 587-589.	10.3	1
34	Modeling human disease using organotypic cultures. Current Opinion in Cell Biology, 2016, 43, 22-29.	5.4	48
35	Bimodal skin progenitors—a matter of place and time. EMBO Journal, 2016, 35, 2628-2630.	7.8	0
36	From Definitive Endoderm to Gut—a Process of Growth and Maturation. Stem Cells and Development, 2015, 24, 1972-1983.	2.1	22

#	Article	IF	CITATIONS
37	Hippo signalling directs intestinal fate. Nature Cell Biology, 2015, 17, 5-6.	10.3	11
38	Heterogeneity and plasticity of epidermal stem cells. Development (Cambridge), 2014, 141, 2559-2567.	2.5	97
39	The Epidermis Comprises Autonomous Compartments Maintained by Distinct Stem Cell Populations. Cell Stem Cell, 2013, 13, 471-482.	11.1	268
40	Generation of Multipotent Foregut Stem Cells from Human Pluripotent Stem Cells. Stem Cell Reports, 2013, 1, 293-306.	4.8	77
41	Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury. Cell Stem Cell, 2013, 13, 734-744.	11.1	329
42	Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development (Cambridge), 2013, 140, 1433-1444.	2.5	82
43	<scp>LRIG1</scp> regulates cadherinâ€dependent contact inhibition directing epithelial homeostasis and preâ€invasive squamous cell carcinoma development. Journal of Pathology, 2013, 229, 608-620.	4.5	34
44	An embryonic view of tumour development. Nature, 2013, 501, 171-172.	27.8	0
45	Fondation René Touraine. Experimental Dermatology, 2013, 22, 682-693.	2.9	0
46	Environmental stimuli and intestinal stem cell behavior. Cell Cycle, 2012, 11, 2767-2768.	2.6	0
47	Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biology, 2012, 14, 401-408.	10.3	350
48	Reporting Live from the Epidermal Stem Cell Compartment!. Cell Stem Cell, 2012, 11, 141-142.	11.1	2
49	Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin. Developmental Biology, 2012, 366, 290-297.	2.0	23
50	Rac1 Deletion Causes Thymic Atrophy. PLoS ONE, 2011, 6, e19292.	2.5	8
51	Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nature Protocols, 2010, 5, 898-911.	12.0	174
52	Differential sensitivity of epidermal cell subpopulations to β-catenin-induced ectopic hair follicle formation. Developmental Biology, 2010, 343, 40-50.	2.0	44
53	Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development (Cambridge), 2009, 136, 2815-2823.	2.5	297
54	Necl2 regulates epidermal adhesion and wound repair. Development (Cambridge), 2009, 136, 3505-3514.	2.5	30

#	Article	IF	CITATIONS
55	Epsilon Haemoglobin Specific Antibodies with Applications in Noninvasive Prenatal Diagnosis. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-8.	3.0	10
56	Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis. Cell Stem Cell, 2009, 4, 427-439.	11.1	450
57	Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine, 2009, 1, 260-267.	6.9	162
58	Functionally fused antibodies—A novel adjuvant fusion system. Journal of Immunological Methods, 2008, 339, 220-227.	1.4	0
59	A stem cell gene expression profile of human squamous cell carcinomas. Cancer Letters, 2008, 272, 23-31.	7.2	48
60	Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I. Immunology, 2006, 117, 502-506.	4.4	15
61	Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11958-11963.	7.1	286
62	Isolation of Recombinant Phage-Displayed Antibodies Recognizing Skin Keratinocytes. , 2005, 289, 359-370.		2
63	Multivalent scFv Display of Phagemid Repertoires for the Selection of Carbohydrate-specific Antibodies and its Application to the Thomsen–Friedenreich Antigen. Journal of Molecular Biology, 2004, 343, 985-996.	4.2	36
64	Identification of Keratinocyte-specific Markers Using Phage Display and Mass Spectrometry. Molecular and Cellular Proteomics, 2003, 2, 61-69.	3.8	33
65	Functional improvement of antibody fragments using a novel phage coat protein III fusion system. Biochemical and Biophysical Research Communications, 2002, 298, 566-573.	2.1	26
66	De novo identification of cell-type specific antibody-antigen pairs by phage display subtraction. FEBS Journal, 2001, 268, 3099-3107.	0.2	8
67	Identification of phage antibodies toward the Werner protein by selection on Western blots. Electrophoresis, 2000, 21, 509-516.	2.4	14
68	Applying phage display technology in aging research. Biogerontology, 2000, 1, 67-78.	3.9	10