Serena Rinaldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7507341/publications.pdf

Version: 2024-02-01

64 papers

1,756 citations

236925 25 h-index 315739 38 g-index

66 all docs 66
docs citations

66 times ranked 2346 citing authors

#	Article	IF	Citations
1	Glucose Metabolism in the Progression of Prostate Cancer. Frontiers in Physiology, 2017, 8, 97.	2.8	98
2	SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death and Disease, 2014, 5, e1525-e1525.	6.3	88
3	NO sensing in Pseudomonas aeruginosa: Structure of the Transcriptional Regulator DNR. Journal of Molecular Biology, 2008, 378, 1002-1015.	4.2	80
4	How pyridoxal 5′â€phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS Journal, 2015, 282, 1225-1241.	4.7	78
5	The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Applied Microbiology and Biotechnology, 2013, 97, 7325-7336.	3.6	72
6	Nitrite and Nitrite Reductases: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants and Redox Signaling, 2012, 17, 684-716.	5.4	61
7	C-di-GMP Hydrolysis by Pseudomonas aeruginosa HD-GYP Phosphodiesterases: Analysis of the Reaction Mechanism and Novel Roles for pGpG. PLoS ONE, 2013, 8, e74920.	2.5	53
8	Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiology Letters, 2018, 365, .	1.8	53
9	In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. European Journal of Medicinal Chemistry, 2011, 46, 1616-1621.	5.5	52
10	Fractalkine Modulates Microglia Metabolism in Brain Ischemia. Frontiers in Cellular Neuroscience, 2019, 13, 414.	3.7	51
11	The transcription factor DNR from Pseudomonas aeruginosa specifically requires nitric oxide and haem for the activation of a target promoter in Escherichia coli. Microbiology (United Kingdom), 2009, 155, 2838-2844.	1.8	47
12	Fast Dissociation of Nitric Oxide from Ferrous Pseudomonas aeruginosa cd1 Nitrite Reductase. Journal of Biological Chemistry, 2007, 282, 14761-14767.	3.4	46
13	Investigating the Allosteric Regulation of YfiN from Pseudomonas aeruginosa: Clues from the Structure of the Catalytic Domain. PLoS ONE, 2013, 8, e81324.	2.5	45
14	A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget, 2016, 7, 4570-4583.	1.8	45
15	Probing the activity of diguanylate cyclases and c-di-GMP phosphodiesterases in real-time by CD spectroscopy. Nucleic Acids Research, 2013, 41, e79-e79.	14.5	42
16	<i>In Silico</i> Discovery and <i>In Vitro</i> Validation of Catechol-Containing Sulfonohydrazide Compounds as Potent Inhibitors of the Diguanylate Cyclase PleD. Journal of Bacteriology, 2016, 198, 147-156.	2.2	42
17	Screening and In Vitro Testing of Antifolate Inhibitors of Human Cytosolic Serine Hydroxymethyltransferase. ChemMedChem, 2015, 10, 490-497.	3.2	34
18	Synthesis of Triazole-Linked Analogues of c-di-GMP and Their Interactions with Diguanylate Cyclase. Journal of Medicinal Chemistry, 2015, 58, 8269-8284.	6.4	34

#	Article	IF	CITATIONS
19	Nitrite Reductases in Denitrification. , 2007, , 37-55.		33
20	Structural Basis of Functional Diversification of the HD-GYP Domain Revealed by the Pseudomonas aeruginosa PA4781 Protein, Which Displays an Unselective Bimetallic Binding Site. Journal of Bacteriology, 2015, 197, 1525-1535.	2.2	33
21	Dynamic Hydrogen-Bonding Network in the Distal Pocket of the Nitrosyl Complex of Pseudomonas aeruginosa cd $<$ sub $>$ 1 $<$ /sub $>$ Nitrite Reductase. Journal of the American Chemical Society, 2011, 133, 3043-3055.	13.7	32
22	The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Research, 2019, 47, 4240-4254.	14.5	32
23	The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets. IUBMB Life, 2014, 66, 52-62.	3.4	31
24	A novel bacterial <scp>l</scp> â€arginine sensor controlling câ€diâ€GMP levels in <i>Pseudomonas aeruginosa</i> . Proteins: Structure, Function and Bioinformatics, 2018, 86, 1088-1096.	2.6	31
25	Insights into the GTPâ€dependent allosteric control of câ€diâ€GMP hydrolysis from the crystal structure of PA0575 protein from <i>PseudomonasÂaeruginosa</i> . FEBS Journal, 2018, 285, 3815-3834.	4.7	31
26	Reaction of Aplysia limacina metmyoglobin with hydrogen peroxide. Dalton Transactions, 2007, , 840.	3.3	30
27	Intramolecular Electron Transfer in Pseudomonas aeruginosa cd1 Nitrite Reductase: Thermodynamics and Kinetics. Biophysical Journal, 2009, 96, 2849-2856.	0.5	29
28	Observation of fast release of NO from ferrous $\langle i \rangle d \langle i \rangle 1$ haem allows formulation of a unified reaction mechanism for cytochrome $\langle i \rangle cd \langle i \rangle 1$ nitrite reductases. Biochemical Journal, 2011, 435, 217-225.	3.7	28
29	The catalytic activity of serine hydroxymethyltransferase is essential for <i>deÂnovo</i> nuclear <scp>dTMP</scp> synthesis in lung cancer cells. FEBS Journal, 2018, 285, 3238-3253.	4.7	28
30	A dramatic conformational rearrangement is necessary for the activation of DNR from ⟨i⟩Pseudomonas aeruginosa⟨i⟩. Crystal structure of wildâ€type DNR. Proteins: Structure, Function and Bioinformatics, 2009, 77, 174-180.	2.6	27
31	The <i>Pseudomonas aeruginosa</i> i> DNR transcription factor: light and shade of nitric oxide-sensing mechanisms. Biochemical Society Transactions, 2011, 39, 294-298.	3.4	26
32	Identification of small molecule inhibitors of the Aurora-A/TPX2 complex. Oncotarget, 2017, 8, 32117-32133.	1.8	23
33	Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. International Journal of Molecular Sciences, 2022, 23, 4386.	4.1	22
34	Interactions outside the Boundaries of the Canonical Binding Groove of a PDZ Domain Influence Ligand Binding. Biochemistry, 2012, 51, 8971-8979.	2.5	21
35	Unusual Heme Binding Properties of the Dissimilative Nitrate Respiration Regulator, a Bacterial Nitric Oxide Sensor. Antioxidants and Redox Signaling, 2012, 17, 1178-1189.	5.4	21
36	Nitrite controls the release of nitric oxide in Pseudomonas aeruginosa cd1 nitrite reductase. Biochemical and Biophysical Research Communications, 2007, 363, 662-666.	2.1	20

#	Article	IF	Citations
37	NO Production by Pseudomonas aeruginosa cd1 Nitrite Reductase. IUBMB Life, 2004, 55, 617-621.	3.4	19
38	New insights into the activity of <i>Pseudomonas aeruginosa cd</i> 1 nitrite reductase. Biochemical Society Transactions, 2008, 36, 1155-1159.	3.4	17
39	The catalytic mechanism of <i>Pseudomonas aeruginosa cd</i> 1 nitrite reductase. Biochemical Society Transactions, 2011, 39, 195-200.	3.4	17
40	High-Fat Diet Leads to Reduced Protein O-GlcNAcylation and Mitochondrial Defects Promoting the Development of Alzheimer's Disease Signatures. International Journal of Molecular Sciences, 2021, 22, 3746.	4.1	17
41	N-oxide sensing and denitrification: the DNR transcription factors. Biochemical Society Transactions, 2006, 34, 185-187.	3.4	15
42	Novel genetic tools to tackle c-di-GMP-dependent signalling in Pseudomonas aeruginosa. Journal of Applied Microbiology, 2016, 120, 205-217.	3.1	15
43	Differential inhibitory effect of a pyrazolopyran compound on human serine hydroxymethyltransferase-amino acid complexes. Archives of Biochemistry and Biophysics, 2018, 653, 71-79.	3.0	14
44	Nitrite reduction: a ubiquitous function from a preâ€eerobic past. BioEssays, 2009, 31, 885-891.	2.5	13
45	Distal–proximal crosstalk in the heme binding pocket of the NO sensor DNR. BioMetals, 2014, 27, 763-773.	4.1	13
46	Heme d1 Nitrosyl Complex of cd1 Nitrite Reductase Studied by High-Field-Pulse Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2009, 48, 3913-3915.	4.0	11
47	Cytosolic serine hydroxymethyltransferase controls lung adenocarcinoma cells migratory ability by modulating AMP kinase activity. Cell Death and Disease, 2020, 11, 1012.	6.3	11
48	Ancient hemes for ancient catalysts. Plant Signaling and Behavior, 2008, 3, 135-136.	2.4	9
49	Structural and functional investigation of the Small Ribosomal Subunit Biogenesis GTP ase A (RsgA) from PseudomonasÂaeruginosa. FEBS Journal, 2019, 286, 4245-4260.	4.7	9
50	Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine levels across cellular compartments. Computational and Structural Biotechnology Journal, 2021, 19, 3034-3041.	4.1	9
51	N-oxide sensing in Pseudomonas aeruginosa: expression and preliminary characterization of DNR, an FNR–CRP type transcriptional regulator. Biochemical Society Transactions, 2005, 33, 184-186.	3.4	7
52	Linking Infection and Prostate Cancer Progression: Toll-like Receptor3 Stimulation Rewires Glucose Metabolism in Prostate Cells. Anticancer Research, 2019, 39, 5541-5549.	1.1	7
53	Determining folding and binding properties of the Câ€terminal SH2 domain of SHP2. Protein Science, 2021, 30, 2385-2395.	7.6	6
54	Studying GGDEF Domain in the Act: Minimize Conformational Frustration to Prevent Artefacts. Life, 2021, 11, 31.	2.4	4

#	Article	IF	CITATIONS
55	The Emerging Role of Amino Acids of the Brain Microenvironment in the Process of Metastasis Formation. Cancers, 2021, 13, 2891.	3.7	4
56	A conserved scaffold with heterogeneous metal ion binding site: the multifaceted example of HD-GYP proteins. Coordination Chemistry Reviews, 2022, 450, 214228.	18.8	4
57	Critical role of His369 in the reactivity of Pseudomonas aeruginosa cytochrome cd1nitrite reductase with oxygen. FEBS Journal, 2006, 273, 4495-4503.	4.7	3
58	Solvent Accessibility in the Distal Heme Pocket of the Nitrosyl d ₁ -Heme Complex of <i>Pseudomonas stutzeri</i> cd ₁ Nitrite Reductase. Biochemistry, 2012, 51, 9192-9201.	2.5	3
59	Cytosolic localization and <i>in vitro</i> assembly of human <i>de novo</i> thymidylate synthesis complex. FEBS Journal, 2022, 289, 1625-1649.	4.7	3
60	CHAPTER 4. Nitrite Reductase – Cytochrome <i>cd</i> 1. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 59-90.	0.8	2
61	Structure and Function of HD-GYP Phosphodiesterases. , 2020, , 65-78.		2
62	XAS study of the active site of a bacterial heme-sensor. Journal of Physics: Conference Series, 2009, 190, 012202.	0.4	1
63	Nitrosylation of c heme in cd1-nitrite reductase is enhanced during catalysis. Biochemical and Biophysical Research Communications, 2014, 451, 449-454.	2.1	0
64	Importance of amino acids in brain parenchyma invasion by cancer cells. Oncoscience, 2021, 8, 47-49.	2.2	0