
Jian Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7506198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constructing Tertiary Alcohols with Vicinal Stereocenters: Highly Diastereo- and Enantioselective Cyanosilylation of α-Branched Acyclic Ketones and Their Kinetic Resolution. CCS Chemistry, 2022, 4, 2140-2152.	7.8	17
2	Me ₂ (CH ₂ H)SiCN: a bifunctional ethylene equivalent for Diels–Alder reaction based controllable tandem synthesis. Chemical Science, 2022, 13, 3519-3525.	7.4	4
3	Highly stereoselective synthesis of spirocyclopropylthiooxindoles and biological evaluation. Organic Chemistry Frontiers, 2022, 9, 2640-2646.	4.5	3
4	Recent Advances in Applying Carbonylâ€stabilized Phosphorus Ylides for Catalysis. ChemCatChem, 2021, 13, 129-139.	3.7	8
5	Organocatalytic enantioselective reactions involving prochiral carbocationic intermediates. Chemical Communications, 2021, 57, 9178-9191.	4.1	12
6	Recent Advances in Synthesis of Chiral 1,2-Dihydropyridines. Acta Chimica Sinica, 2021, 79, 685.	1.4	7
7	Highly Enantioselective CuAAC of Functional Tertiary Alcohols Featuring an Ethynyl Group and Their Kinetic Resolution. Angewandte Chemie - International Edition, 2021, 60, 8488-8493.	13.8	46
8	The changes of MRP2 expression in three kinds of pulmonary inflammation models: the downregulation occurred in cigarette smoke extract (CSE) stimulation group and CSE plus LPS stimulation group, unchanged in LPS stimulation group. Toxicology Mechanisms and Methods, 2021, 31, 413-424.	2.7	2
9	Highly Enantioselective CuAAC of Functional Tertiary Alcohols Featuring an Ethynyl Group and Their Kinetic Resolution. Angewandte Chemie, 2021, 133, 8569-8574.	2.0	12
10	Catalytic Enantioselective Transfer Hydrogenation–Carboxylative Cyclization to 4-Fluoroalkyl 2-Oxazolidinone with CO ₂ as the C1 Synthon. Organic Letters, 2021, 23, 2726-2730.	4.6	4
11	Modular synthesis of chiral 1,2-dihydropyridines via Mannich/Wittig/cycloisomerization sequence that internally reuses waste. Nature Communications, 2021, 12, 2219.	12.8	15
12	Construction of <i>gem</i> -Difluoroenol Esters through Catalytic <i>O</i> -Selective Addition of Difluoroenoxysilanes to Ketenes. Journal of Organic Chemistry, 2021, 86, 7797-7805.	3.2	12
13	Highly Stereoselective Positional Isomerization of Styrenes <i>via</i> <scp>Acidâ€Catalyzed</scp> Carbocation Mechanism. Chinese Journal of Chemistry, 2021, 39, 2227-2233.	4.9	11
14	Catalyst-Free and Solvent-Controlled Divergent Synthesis of Difluoromethylene-Containing <i>S</i> -Heterocycles. Journal of Organic Chemistry, 2021, 86, 9206-9217.	3.2	16
15	Au-Catalyzed Formal Allylation of Diazo(thio)oxindoles: Application to Tandem Asymmetric Synthesis of Quaternary Stereocenters. Organic Letters, 2021, 23, 4864-4869.	4.6	15
16	Microglia-Specific Expression of HEXA and HEXB Leads to Poor Prognosis in Glioblastoma Patients. Frontiers in Oncology, 2021, 11, 685893.	2.8	5
17	Non-hydrostatic pressure-dependent structural and transport properties of BiCuSeO and BiCuSO single crystals. Journal of Physics Condensed Matter, 2021, 33, 105702.	1.8	3
18	Enantioselective Synthesis of C ^α -Tetrasubstituted <i>N</i> -Hydroxyl-α-amino Nitriles via Cyanation of Ketonitrones Using Me ₂ (CH ₂ Cl)SiCN. Organic Letters, 2021, 23, 8471-8476.	4.6	10

#	Article	IF	CITATIONS
19	Enantioselective carboxylative cyclization of propargylic alcohol with carbon dioxide under mild conditions. Chinese Chemical Letters, 2020, 31, 324-328.	9.0	21
20	A highly efficient In(OTf)3-catalyzed [3 + 3] annulation of spirocyclopropyl oxindoles with 1,4-di-thiane-2,5-diol. Chinese Chemical Letters, 2020, 31, 681-684.	9.0	9
21	LPS-induced inflammation delays the transportation of ASP ⁺ due to down-regulation of OCTN1/2 in alveolar epithelial cells. Journal of Drug Targeting, 2020, 28, 437-447.	4.4	12
22	Catalytic Enantioselective α-Arylation of Carbonyl Enolates and Related Compounds. ACS Catalysis, 2020, 10, 955-993.	11.2	86
23	Activating Pronucleophiles with High p K a Values: Chiral Organo‣uperbases. Angewandte Chemie, 2020, 132, 8080-8090.	2.0	17
24	Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angewandte Chemie, 2020, 132, 1651-1660.	2.0	1
25	Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angewandte Chemie - International Edition, 2020, 59, 1634-1643.	13.8	31
26	Enantioselective synthesis of <i>P</i> -chiral tertiary phosphine oxides with an ethynyl group <i>via</i> Cu(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition. Chemical Science, 2020, 11, 97-106.	7.4	55
27	Activating Pronucleophiles with High p <i>K</i> _a Values: Chiral Organoâ€6uperbases. Angewandte Chemie - International Edition, 2020, 59, 8004-8014.	13.8	44
28	Synthesis of Multifunctional <i>α</i> , <i>α</i> â€Ðifluoroketones through Allylic Alkylation of Difluoroenoxysilanes with MBH Carbonates. Chemistry - an Asian Journal, 2020, 15, 4028-4032.	3.3	7
29	Diastereodivergent Synthesis of α-Chiral Tertiary Azides through Catalytic Asymmetric Michael Addition. Organic Letters, 2020, 22, 8578-8583.	4.6	9
30	Direct Electrochemical Defluorinative Carboxylation of <i>gem</i> -Difluoroalkenes with Carbon Dioxide. Organic Letters, 2020, 22, 8424-8429.	4.6	44
31	Construction of β-Quaternary α,α-Difluoroketones via Catalytic Nucleophilic Substitution of Tertiary Alcohols with Difluoroenoxysilanes. Organic Letters, 2020, 22, 8516-8521.	4.6	19
32	Catalytic enantioselective synthesis using carbon dioxide as a C1 synthon. Organic and Biomolecular Chemistry, 2020, 18, 8597-8619.	2.8	34
33	Titelbild: A Robust Auâ^'C≡C Functionalized Surface: Toward Realâ€Time Mapping and Accurate Quantification of Fe ²⁺ in the Brains of Live AD Mouse Models (Angew. Chem. 46/2020). Angewandte Chemie, 2020, 132, 20425-20425.	2.0	0
34	Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chemical Science, 2020, 11, 9341-9365.	7.4	96
35	Regioselective Markovnikov hydrodifluoroalkylation of alkenes using difluoroenoxysilanes. Nature Communications, 2020, 11, 5500.	12.8	47
36	Identification of novel STAT3 inhibitors bearing 2-acetyl-7-phenylamino benzofuran scaffold for antitumour study. Bioorganic and Medicinal Chemistry, 2020, 28, 115822.	3.0	5

#	Article	IF	CITATIONS
37	A Robust Auâ^'C≡C Functionalized Surface: Toward Realâ€Time Mapping and Accurate Quantification of Fe ²⁺ in the Brains of Live AD Mouse Models. Angewandte Chemie - International Edition, 2020, 59, 20499-20507.	13.8	39
38	A Robust Auâ^'C≡C Functionalized Surface: Toward Realâ€Time Mapping and Accurate Quantification of Fe 2+ in the Brains of Live AD Mouse Models. Angewandte Chemie, 2020, 132, 20680-20688.	2.0	10
39	Direct electrochemical defluorinative carboxylation of α-CF ₃ alkenes with carbon dioxide. Chemical Science, 2020, 11, 10414-10420.	7.4	83
40	<scp>Pdâ€Catalyzed Siteâ€Selective</scp> Borylation of Simple Arenes <i>via</i> Thianthrenation ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1269-1272.	4.9	23
41	Catalytic Enantioselective Cyanation: Recent Advances and Perspectives. ACS Catalysis, 2020, 10, 7668-7690.	11.2	76
42	3-Difluoroalkyl Quaternary Oxindoles Inhibit Macrophage Pyroptosis by Blocking Inflammasome Recruitment of Caspase-1. ACS Medicinal Chemistry Letters, 2020, 11, 1392-1401.	2.8	3
43	H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chemical Science, 2020, 11, 3852-3861.	7.4	29
44	Activation of Chiral (Salen)TiCl ₂ Complex by Phosphorane for the Highly Enantioselective Cyanation of Nitroolefins. Organic Letters, 2020, 22, 2099-2104.	4.6	29
45	Carbonyl-Stabilized Phosphorus Ylide as an Organocatalyst for Cyanosilylation Reactions Using TMSCN. Journal of Organic Chemistry, 2020, 85, 14342-14350.	3.2	15
46	Enantioselective Cu(I)-Catalyzed Cycloaddition of Prochiral Diazides with Terminal or 1-Iodoalkynes. Organic Letters, 2020, 22, 1270-1274.	4.6	23
47	Stereoselective defluorinative carboxylation of <i>gem</i> -difluoroalkenes with carbon dioxide. Organic Chemistry Frontiers, 2019, 6, 3678-3682.	4.5	32
48	Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. ACS Catalysis, 2019, 9, 1820-1882.	11.2	227
49	Catalytic Enantioselective Protonation of Monofluorinated Silyl Enol Ethers towards Chiral αâ€Fluoroketones. Chinese Journal of Chemistry, 2019, 37, 799-806.	4.9	16
50	A Sc(OTf)3 catalyzed Mukaiyama–Mannich reaction of difluoroenoxysilanes with unactivated ketimines. Organic Chemistry Frontiers, 2019, 6, 2500-2505.	4.5	14
51	Catalytic Enantioselective Aldolâ€Type Reaction Using αâ€Fluorinated Enolates. Asian Journal of Organic Chemistry, 2019, 8, 610-626.	2.7	20
52	Synthesis of β-Arylethenesulfonyl Fluoride via Pd-Catalyzed Nondirected C–H Alkenylation. Organic Letters, 2019, 21, 1426-1429.	4.6	82
53	Multifunctional 1,3-diphenylguanidine for the carboxylative cyclization of homopropargyl amines with CO ₂ under ambient temperature and pressure. Chemical Communications, 2019, 55, 14303-14306.	4.1	13
54	HClO ₄ catalysed aldol-type reaction of fluorinated silyl enol ethers with acetals or ketals toward fluoroalkyl ethers. Organic and Biomolecular Chemistry, 2019, 17, 9430-9434.	2.8	10

Jian Zhou

#	Article	IF	CITATIONS
55	Catalytic selective mono- and difluoroalkylation using fluorinated silyl enol ethers. Chemical Communications, 2019, 55, 13638-13648.	4.1	82
56	A highly efficient Hg(OTf) ₂ -mediated Sakurai–Hosomi allylation of <i>N-tert</i> -butyloxycarbonylamino sulfones, aldehydes, fluoroalkyl ketones and α,β-unsaturated enones using allyltrimethylsilane. Organic Chemistry Frontiers, 2019, 6, 3989-3995.	4.5	8
57	Internally reuse by-product as promoter: A catalyst-free imine formation/Mukaiyama-Mannich sequence of α-amido sulfones with fluorinated silyl enol ethers. Journal of Fluorine Chemistry, 2019, 219, 106-114.	1.7	12
58	Internally Reuse Waste: Catalytic Asymmetric Oneâ€Pot Strecker Reaction of Fluoroalkyl Ketones, Anilines and TMSCN by Sequential Catalysis. Chinese Journal of Chemistry, 2018, 36, 321-328.	4.9	36
59	Metalâ€Free Azidation of αâ€Hydroxy Esters and αâ€Hydroxy Ketones Using Azidotrimethylsilane. Advanced Synthesis and Catalysis, 2018, 360, 1116-1122.	4.3	16
60	Back Cover: Internally Reuse Waste: Catalytic Asymmetric One-Pot Strecker Reaction of Fluoroalkyl Ketones, Anilines and TMSCN by Sequential Catalysis (Chin. J. Chem. 4/2018). Chinese Journal of Chemistry, 2018, 36, 372-372.	4.9	0
61	Catalytic enantioselective synthesis of α-chiral azides. Organic Chemistry Frontiers, 2018, 5, 1542-1559.	4.5	54
62	An efficient Fe(III)-catalyzed 1,6-conjugate addition of para-quinone methides with fluorinated silyl enol ethers toward β,β-diaryl α-fluorinated ketones. Tetrahedron, 2018, 74, 7395-7398.	1.9	24
63	One-Pot Sequential [3 + 3] Dipolar Cycloaddition of Aldehyde or Ketone and Hydroxylamine with Spirocyclopropyl Oxindole. Journal of Organic Chemistry, 2018, 83, 12763-12774.	3.2	18
64	Catalytic enantioselective synthesis of cyclopropanes featuring vicinal all-carbon quaternary stereocenters with a CH ₂ F group; study of the influence of C–Fâ <th–n interactions="" on<br="">reactivity. Organic Chemistry Frontiers, 2018, 5, 2960-2968.</th–n>	4.5	30
65	Understanding the role of ethylene glycol in a remarkable catalyst-free Strecker reaction of a-CF3 ketoimine: A theoretical study. Computational and Theoretical Chemistry, 2018, 1142, 57-65.	2.5	0
66	Sidearm Modified Bisoxazoline Ligands and Their Applications. Chinese Journal of Chemistry, 2018, 36, 1123-1129.	4.9	28
67	Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles. Accounts of Chemical Research, 2018, 51, 1443-1454.	15.6	321
68	Au(I)/Chiral Tertiary Amine Catalyzed Tandem Olefination/Asymmetric Cyclization Reaction to Quaternary Spirocyclic Oxindoles. Acta Chimica Sinica, 2018, 76, 862.	1.4	10
69	Influence of C—F…H—X Interactions on Organic Reactions. Acta Chimica Sinica, 2018, 76, 925.	1.4	28
70	Highly Stereoselective Gold atalyzed Coupling of Diazo Reagents and Fluorinated Enol Silyl Ethers to Tetrasubstituted Alkenes. Angewandte Chemie - International Edition, 2017, 56, 2459-2463.	13.8	88
71	Highly Stereoselective Gold atalyzed Coupling of Diazo Reagents and Fluorinated Enol Silyl Ethers to Tetrasubstituted Alkenes. Angewandte Chemie, 2017, 129, 2499-2503.	2.0	16
72	Activation of (salen)CoI complex by phosphorane for carbon dioxide transformation at ambient temperature and pressure. Green Chemistry, 2017, 19, 3908-3915.	9.0	66

#	Article	IF	CITATIONS
73	A general and efficient Lewis acid catalysed Mukaiyama-aldol reaction of difluoroenoxysilanes and ketones. Science Bulletin, 2017, 62, 1504-1509.	9.0	21
74	Diastereo- and enantioselective [3 + 3] cycloaddition of spirocyclopropyl oxindoles using both aldonitrones and ketonitrones. Nature Communications, 2017, 8, 1619.	12.8	84
75	Utilization of CO ₂ as a C1 Building Block in a Tandem Asymmetric A ³ Coupling-Carboxylative Cyclization Sequence to 2-Oxazolidinones. ACS Catalysis, 2017, 7, 8588-8593.	11.2	71
76	A Highly Efficient Gold(I)-Catalyzed Mukaiyama–Mannich Reaction of α-Amino Sulfones with Fluorinated Silyl Enol Ethers To Give β-Amino α-Fluorinated Ketones. Synlett, 2017, 28, 2194-2198.	1.8	11
77	Me2(CH2Cl)SiCN: Bifunctional Cyanating Reagent for the Synthesis of Tertiary Alcohols with a Chloromethyl Ketone Moiety via Ketone Cyanosilylation. Journal of the American Chemical Society, 2016, 138, 8730-8733.	13.7	58
78	Catalytic Enantioselective Construction of Sulfur-Containing Tetrasubstituted Carbon Stereocenters. ACS Catalysis, 2016, 6, 5319-5344.	11.2	118
79	Computational insight into the cooperative role of non-covalent interactions in the aza-Henry reaction catalyzed by quinine derivatives: mechanism and enantioselectivity. Organic and Biomolecular Chemistry, 2016, 14, 9588-9597.	2.8	11
80	Nucleophilic Difluoromethylenation of Ketones Using Diethyl (Difluoro(trimethylsilyl)methyl)phosphonate Mediated by 18-Crown-6 Ether/KOAc. Journal of Organic Chemistry, 2016, 81, 7807-7816.	3.2	23
81	Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters. Chemical Reviews, 2016, 116, 7330-7396.	47.7	583
82	Activation of Chiral (Salen)AlCl Complex by Phosphorane for Highly Enantioselective Cyanosilylation of Ketones and Enones. Journal of the American Chemical Society, 2016, 138, 416-425.	13.7	108
83	Asymmetric sequential Au(<scp>i</scp>)/chiral tertiary amine catalysis: an enone-formation/cyanosilylation sequence to synthesize optically active 3-alkenyloxindoles from diazooxindoles. Chemical Communications, 2016, 52, 3943-3946.	4.1	50
84	Organocatalytic enantioselective Mukaiyama–Mannich reaction of fluorinated enol silyl ethers and cyclic N-sulfonyl ketimines. Organic Chemistry Frontiers, 2016, 3, 298-303.	4.5	71
85	Sequential Au(<scp>i</scp>)/chiral tertiary amine catalysis: a tandem C–H functionalization of anisoles or a thiophene/asymmetric Michael addition sequence to quaternary oxindoles. Chemical Communications, 2016, 52, 2537-2540.	4.1	97
86	A highly enantioselective Hg(<scp>ii</scp>)-catalyzed Sakurai–Hosomi reaction of isatins with allyltrimethylsilanes. Organic and Biomolecular Chemistry, 2016, 14, 5500-5504.	2.8	28
87	A Comparison of Me ₂ (CH ₂ Cl)SiCN and Me ₃ SiCN in Catalytic Enantioselective Cyanation of Aldehydes. Acta Chimica Sinica, 2016, 74, 984.	1.4	10
88	Catalytic asymmetric synthesis of polysubstituted spirocyclopropyl oxindoles: organocatalysis versus transition metal catalysis. Organic Chemistry Frontiers, 2015, 2, 849-858.	4.5	95
89	A Journey in the Catalytic Synthesis of 3-Substituted 3-AminoÂoxindoles. Synlett, 2015, 26, 2491-2504.	1.8	61
90	Recycle Waste Salt as Reagent: A One-Pot Substitution/Krapcho Reaction Sequence to α-Fluorinated Esters and Sulfones. Organic Letters, 2015, 17, 972-975.	4.6	29

#	Article	IF	CITATIONS
91	An efficient catalyst-free Mukaiyama-aldol reaction of fluorinated enol silyl ethers with tryptanthrin. Organic and Biomolecular Chemistry, 2015, 13, 8906-8911.	2.8	40
92	Kidney Injury Associated with Telavancin Dosing Regimen in an Animal Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 2930-2933.	3.2	5
93	Michael Addition Catalyzed by Chiral Secondary Amine Phosphoramide Using Fluorinated Silyl Enol Ethers: Formation of Quaternary Carbon Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 7381-7385.	13.8	170
94	Successively Recycle Waste as Catalyst: A One-Pot Wittig/1,4-Reduction/Paal–Knorr Sequence for Modular Synthesis of Substituted Furans. Organic Letters, 2015, 17, 1557-1560.	4.6	63
95	Catalytic Asymmetric Strecker Reaction: Bifunctional Chiral Tertiary Amine/Hydrogen-Bond Donor Catalysis Joins the Field. Synthesis, 2015, 47, 1210-1226.	2.3	34
96	A highly efficient Mukaiyama–Mannich reaction of N-Boc isatin ketimines and other active cyclic ketimines using difluoroenol silyl ethers catalyzed by Ph ₃ PAuOTf. Organic and Biomolecular Chemistry, 2015, 13, 10968-10972.	2.8	48
97	Catalytic asymmetric sulfenylation to structurally diverse dithioketals. Chemical Communications, 2015, 51, 16255-16258.	4.1	60
98	Ga(OTf) ₃ Catalyzed Highly Efficient Substitution Reaction of 3-Hydroxyoxindoles Using TMSN ₃ . Acta Chimica Sinica, 2015, 73, 685.	1.4	12
99	Catalytic Asymmetric Synthesis of Cî \pm -tetrasubstituted Î \pm -Amino Acids. , 2014, 03, .		2
100	Catalytic Asymmetric Electrophilic Amination Reactions To Form Nitrogen-Bearing Tetrasubstituted Carbon Stereocenters. Synthesis, 2014, 46, 2983-3003.	2.3	100
101	Asymmetric Triple Relay Catalysis: Enantioselective Synthesis of Spirocyclic Indolines through a Oneâ€Pot Process Featuring an Asymmetric 6ï€ Electrocyclization. Angewandte Chemie - International Edition, 2014, 53, 13740-13745.	13.8	147
102	An Organocatalytic Addition of Nitromethane to Activated Ketimines. Asian Journal of Organic Chemistry, 2014, 3, 429-432.	2.7	43
103	Catalytic functionalization of tertiary alcohols to fully substituted carbon centres. Organic and Biomolecular Chemistry, 2014, 12, 6033.	2.8	133
104	Highly enantioselective Michael addition of 3-arylthio- and 3-alkylthiooxindoles to nitroolefins catalyzed by a simple cinchona alkaloid derived phosphoramide. Chemical Communications, 2014, 50, 15179-15182.	4.1	38
105	Highly Efficient "On Water―Catalystâ€Free Nucleophilic Addition Reactions Using Difluoroenoxysilanes: Dramatic Fluorine Effects. Angewandte Chemie - International Edition, 2014, 53, 9512-9516.	13.8	156
106	Catalytic asymmetric synthesis of 3,3-disubstituted oxindoles: diazooxindole joins the field. Tetrahedron Letters, 2014, 55, 2571-2584.	1.4	129
107	Highly stereoselective construction of adjacent tetrasubstituted carbon stereogenic centres via an organocatalytic Mukaiyama-aldol reaction of monofluorinated silyl enol ethers to isatins. Organic Chemistry Frontiers, 2014, 1, 742.	4.5	69
108	Highly Enantioselective Organocatalytic aza-Henry Reaction of Nitroalkanes to N-Boc Isatin Ketimines. Acta Chimica Sinica, 2014, 72, 867.	1.4	27

#	Article	IF	CITATIONS
109	Asymmetric Copper(I)-Catalyzed Azide–Alkyne Cycloaddition to Quaternary Oxindoles. Journal of the American Chemical Society, 2013, 135, 10994-10997.	13.7	151
110	Oneâ€Pot Tandem Approach to Spirocyclic Oxindoles Featuring Adjacent Spiroâ€Stereocenters. Angewandte Chemie - International Edition, 2013, 52, 13735-13739.	13.8	197
111	A highly efficient thiourea catalyzed dehydrative nucleophilic substitution reaction of 3-substituted oxindoles with xanthydrols. RSC Advances, 2013, 3, 19880.	3.6	6
112	A Highly Diastereo- and Enantioselective Hg(II)-Catalyzed Cyclopropanation of Diazooxindoles and Alkenes. Organic Letters, 2013, 15, 42-45.	4.6	106
113	Waste as Catalyst: Tandem Wittig/Conjugate Reduction Sequence to αâ€CF ₃ γâ€Keto Esters That Uses Ph ₃ PO as Catalyst for the Chemoselective Conjugate Reduction. Chemistry - an Asian Journal, 2013, 8, 556-559.	3.3	35
114	Organocatalytic asymmetric cyanation of isatin derived N-Boc ketoimines. Chemical Communications, 2013, 49, 4421-4423.	4.1	142
115	Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at the C3 position. Chemical Communications, 2013, 49, 2022.	4.1	75
116	Catalytic Asymmetric Construction of Stereogenic Carbon Centers that Feature a <i>gem</i> â€Difluoroalkyl Group. Asian Journal of Organic Chemistry, 2013, 2, 194-206.	2.7	94
117	Highly Stereoselective Olefin Cyclopropanation of Diazooxindoles Catalyzed by a <i>C</i> ₂ -Symmetric Spiroketal Bisphosphine/Au(I) Complex. Journal of the American Chemical Society, 2013, 135, 8197-8200.	13.7	318
118	A Catalystâ€Free, Oneâ€Pot Threeâ€Component Aminomethylation of αâ€Substituted Nitroacetates: Theoretical and Experimental Studies into the Rateâ€Accelerating Effects of the Solvent Methanol. Chemistry - an Asian Journal, 2013, 8, 877-882.	3.3	14
119	Metal Catalysis versus Organocatalysis in the Catalytic Asymmetric Synthesis of 3-Hydroxyoxindole. Chinese Journal of Organic Chemistry, 2013, 33, 1595.	1.3	21
120	A Facile Method for the Synthesis of 3-Substituted 3-(Alkylthio)oxindoles or 3-Alkoxyoxindoles. Synthesis, 2012, 44, 3129-3144.	2.3	21
121	The First Catalytic Asymmetric Moritaâ€Baylisâ€Hillman Reaction of Acrolein with Aromatic Aldehydes. Chinese Journal of Chemistry, 2012, 30, 2631-2635.	4.9	6
122	Organocatalytic asymmetric synthesis of 3-difluoroalkyl 3-hydroxyoxindoles. Chemical Communications, 2012, 48, 1919.	4.1	127
123	A catalytic metal-free Ritter reaction to 3-substituted 3-aminooxindoles. Organic and Biomolecular Chemistry, 2012, 10, 3178.	2.8	47
124	Metal-Free Tandem Friedel–Crafts/Lactonization Reaction to Benzofuranones Bearing a Quaternary Center at C3 Position. Journal of Organic Chemistry, 2012, 77, 4354-4362.	3.2	50
125	A Highly Efficient Friedel–Crafts Reaction of Tertiary αâ€Hydroxyesters or αâ€Hydroxyketones to αâ€Quaternary Esters or Ketones. Chemistry - an Asian Journal, 2012, 7, 2510-2515.	3.3	35
126	Organocatalytic asymmetric Michael addition of unprotected 3-substituted oxindoles to 1,4-naphthoquinone. Beilstein Journal of Organic Chemistry, 2012, 8, 1360-1365.	2.2	24

#	Article	IF	CITATIONS
127	Ethylene Glycol: A Powerful Catalystâ€Free Medium for Cĩ£¿C Bondâ€Forming Reactions. Chemistry - an Asian Journal, 2012, 7, 1759-1763.	3.3	43
128	Direct amination of α-substituted nitroacetates using di-tert-butyl azodicarboxylate catalyzed by Hatakeyama's catalyst β-ICD. Organic and Biomolecular Chemistry, 2012, 10, 1158.	2.8	29
129	A Highly Efficient Friedel–Crafts Reaction of 3â€Hydroxyoxindoles and Aromatic Compounds to 3,3â€Diaryl and 3â€Alkylâ€3â€aryloxindoles Catalyzed by Hg(ClO ₄) ₂ â‹3 H <sub Chemistry - an Asian Journal, 2012, 7, 233-241.</sub 	>23. /s ub>	O. 58
130	Highly Enantioselective Organocatalytic Asymmetric Mukaiyama-aldol Reaction of Difluoroenoxysilanes withl²,l³-Unsaturatedl±-Ketoesters. Acta Chimica Sinica, 2012, 70, 1451.	1.4	43
131	Organocatalytic Asymmetric Strecker Reaction of Di- and Trifluoromethyl Ketoimines. Remarkable Fluorine Effect. Organic Letters, 2011, 13, 3826-3829.	4.6	169
132	Cinchona alkaloid-based phosphoramide catalyzed highly enantioselective Michael addition of unprotected 3-substituted oxindoles to nitroolefins. Chemical Science, 2011, 2, 2035.	7.4	161
133	A Hg(ClO ₄) ₂ ·3H ₂ O Catalyzed Sakurai–Hosomi Allylation of Isatins and Isatin Ketoimines Using Allyltrimethylsilane. Organic Letters, 2011, 13, 6398-6401.	4.6	93
134	Hydroxymethylation of \hat{l} ±-substituted nitroacetates. Tetrahedron Letters, 2011, 52, 6118-6121.	1.4	35
135	Organocatalytic Asymmetric αâ€Amination of Unprotected 3â€Aryl and 3â€Aliphatic Substituted Oxindoles using Diâ€ <i>tert</i> â€butyl Azodicarboxylate. Advanced Synthesis and Catalysis, 2011, 353, 2945-2952.	4.3	71
136	Recent Advances in Multicatalyst Promoted Asymmetric Tandem Reactions. Chemistry - an Asian Journal, 2010, 5, 422-434.	3.3	436
137	Catalytic Asymmetric Synthesis of Oxindoles Bearing a Tetrasubstituted Stereocenter at the Câ \in 3 Position. Advanced Synthesis and Catalysis, 2010, 352, 1381-1407.	4.3	1,161
138	Improving the Atom Efficiency of the Wittig Reaction by a "Waste as Catalyst/Coâ€catalyst―Strategy. Angewandte Chemie - International Edition, 2010, 49, 4976-4980.	13.8	119
139	Catalytic Asymmetric Reductive Amination of αâ€Branched Ketones. Angewandte Chemie - International Edition, 2010, 49, 4612-4614.	13.8	146
140	A facile method for the synthesis of oxindole based quaternary α-aminonitriles via the Strecker reaction. Organic and Biomolecular Chemistry, 2010, 8, 3847.	2.8	117
141	Iron-coated TiO2nanotubes and their photocatalytic performance. Journal of Materials Chemistry, 2010, 20, 603-610.	6.7	26
142	Organocatalytic Asymmetric Synthesis of Substituted 3-Hydroxy-2-oxindoles via Moritaâ^'Baylisâ^'Hillman Reaction. Journal of the American Chemical Society, 2010, 132, 15176-15178.	13.7	224
143	Organocatalytic Michael addition of unprotected 3-substituted oxindoles to nitroolefins. Organic and Biomolecular Chemistry, 2010, 8, 2912.	2.8	63
144	Ligandâ€Accelerated Asymmetric [1,2]â€Stevens Rearrangment of Sulfur Ylides <i>via</i> Decomposition of Diazomalonates Catalyzed by Chiral Bisoxazoline/Copper Complex. Advanced Synthesis and Catalysis, 2009, 351, 308-312.	4.3	52

#	Article	IF	CITATIONS
145	An Organocatalytic Asymmetric Tandem Reaction for the Construction of Bicyclic Skeletons. Chemistry - A European Journal, 2009, 15, 11384-11389.	3.3	99
146	Characterization of Key Intermediates in a Complex Organocatalytic Cascade Reaction Using Mass Spectrometry. Angewandte Chemie - International Edition, 2009, 48, 1463-1466.	13.8	90
147	Switchable Reactions of Cyclopropanes with Enol Silyl Ethers. Controllable Synthesis of Cyclopentanes and 1,6-Dicarbonyl Compounds. Journal of Organic Chemistry, 2009, 74, 7684-7689.	3.2	84
148	Asymmetric construction of quaternary stereocenters by direct organocatalytic amination of 3-substituted oxindoles. Chemical Communications, 2009, , 6753.	4.1	154
149	Primaryâ€Amineâ€Catalyzed Enantioselective Intramolecular Aldolizations. Angewandte Chemie - International Edition, 2008, 47, 7656-7658.	13.8	158
150	Phosphine-triggered synthesis of functionalized cyclic compounds. Chemical Society Reviews, 2008, 37, 1140.	38.1	683
151	Synthesis and Characterization of Thermally Stable Nanotubular TiO ₂ and Its Photocatalytic Activity. Journal of Physical Chemistry C, 2008, 112, 18772-18775.	3.1	46
152	Synthesis of trans-3-Substituted Cyclohexylamines via BrÃุnsted Acid CataÂłyzed and Substrate-Mediated Triple Organocatalytic Cascade Reaction. Synlett, 2007, 2007, 2037-2040.	1.8	2
153	Organocatalytic Asymmetric Reaction Cascade to Substituted Cyclohexylamines. Journal of the American Chemical Society, 2007, 129, 7498-7499.	13.7	268
154	Catalytic Asymmetric Acylcyanation of Imines. Angewandte Chemie - International Edition, 2007, 46, 612-614.	13.8	131
155	Trisoxazoline/Cu(II)-Promoted Kinugasa Reaction. Enantioselective Synthesis ofβ-Lactams. Journal of Organic Chemistry, 2006, 71, 3576-3582.	3.2	107
156	Catalytic Acylcyanation of Imines with Acetylcyanide. Synlett, 2006, 2006, 3275-3276.	1.8	5
157	Modular Synthesis of Chiral Homo- and Heterotrisoxazolines. Improving the Enantioselectivity in the Asymmetric Michael Addition of Indole to Benzylidene Malonate. Journal of Organic Chemistry, 2005, 70, 6108-6110.	3.2	54
158	The Development and Application of Chiral Trisoxazolines in Asymmetric Catalysis and Molecular Recognition. ChemInform, 2005, 36, no.	0.0	0
159	Modular Synthesis of Chiral Homo- and Heterotrisoxazolines. Improving the Enantioselectivity in the Asymmetric Michael Addition of Indole to Benzylidene Malonate ChemInform, 2005, 36, no.	0.0	0
160	The development and application of chiral trisoxazolines in asymmetric catalysis and molecular recognition. Chemical Society Reviews, 2005, 34, 664.	38.1	130
161	Chiral Tris(oxazoline)/Cu(II) Catalyzed Coupling of Terminal Alkynes and Nitrones ChemInform, 2004, 35, no.	0.0	0
162	Enantioselective Friedel—Crafts Reaction of Indoles with Arylidene Malonates Catalyzed byiPr-Bisoxazoline—Cu(OTf)2 ChemInform, 2004, 35, no.	0.0	0

Jian Zhou

#	Article	IF	CITATIONS
163	Pseudo-C3-Symmetric Trisoxazolines as Ligands in Copper Catalyzed Enantioselective Diels—Alder Reaction ChemInform, 2004, 35, no.	0.0	0
164	Sidearm Approach: A Promising Strategy for Construction of Bisoxazoline-Based Ligand Library ChemInform, 2004, 35, no.	0.0	0
165	Diastereoselectivity-Switchable and Highly Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Alkylidene Malonates ChemInform, 2004, 35, no.	0.0	0
166	Pseudo-C3-symmetric trisoxazolines as ligands in copper catalyzed enantioselective Diels–Alder reaction. Organic and Biomolecular Chemistry, 2004, 2, 429-433.	2.8	64
167	Diastereoselectivity-Switchable and Highly Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Alkylidene Malonates. Organic Letters, 2004, 6, 1677-1679.	4.6	87
168	Sidearm Approach:Â A Promising Strategy for Construction of Bisoxazoline-Based Ligand Library. ACS Combinatorial Science, 2004, 6, 301-304.	3.3	42
169	Enantioselective Friedel–Crafts reaction of indoles with arylidene malonates catalyzed byiPr-bisoxazoline–Cu(OTf)2. Chemical Communications, 2004, , 432-433.	4.1	97
170	Controllable Enantioselective Friedelâ~'Crafts Reaction1between Indoles and Alkylidene Malonates Catalyzed by Pseudo-C3-Symmetric Trisoxazoline Copper(II) Complexes. Journal of Organic Chemistry, 2004, 69, 1309-1320.	3.2	160
171	Chiral tris(oxazoline)/Cu(ii) catalyzed coupling of terminal alkynes and nitronesElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b306653c/. Chemical Communications, 2003, , 2554.	4.1	78
172	Sidearm Effect: Improvement of the Enantiomeric Excess in the Asymmetric Michael Addition‡of Indoles to Alkylidene Malonates. Journal of the American Chemical Society, 2002, 124, 9030-9031.	13.7	270