Marta I Garrido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7506121/publications.pdf

Version: 2024-02-01

147801 102487 5,255 67 31 66 h-index citations g-index papers 5100 92 92 92 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Towards a cross-level understanding of Bayesian inference in the brain. Neuroscience and Biobehavioral Reviews, 2022, 137, 104649.	6.1	1
2	Neural and computational processes of accelerated perceptual awareness and decisions: A 7T fMRI study. Human Brain Mapping, 2022, 43, 3873-3886.	3.6	2
3	Surprising Threats Accelerate Conscious Perception. Frontiers in Behavioral Neuroscience, 2022, 16, .	2.0	1
4	Reduced effective connectivity between right parietal and inferior frontal cortex during audiospatial perception in neglect patients with a right-hemisphere lesion. Hearing Research, 2021, 399, 108052.	2.0	5
5	Unilateral neglect within the predictive processing framework. Brain Communications, 2021, 3, fcab193.	3.3	3
6	A salience misattribution model for addictive-like behaviors. Neuroscience and Biobehavioral Reviews, 2021, 125, 466-477.	6.1	8
7	Predicting subclinical psychotic-like experiences on a continuum using machine learning. Neurolmage, 2021, 241, 118329.	4.2	1
8	Stronger Top-Down and Weaker Bottom-Up Frontotemporal Connections During Sensory Learning Are Associated With Severity of Psychotic Phenomena. Schizophrenia Bulletin, 2021, 47, 1039-1047.	4.3	7
9	Dellrium VULnerability in GEriatrics (DIVULGE) study: a protocol for a prospective observational study of electroencephalogram associations with incident postoperative delirium. BMJ Neurology Open, 2021, 3, e000199.	1.6	2
10	Porthole and Stormcloud: Tools for Visualisation of Spatiotemporal M/EEG Statistics. Neuroinformatics, 2020, 18, 351-363.	2.8	6
11	Randomised controlled trial of Compensatory Cognitive Training and a Computerised Cognitive Remediation programme. Trials, 2020, 21, 810.	1.6	0
12	Statistical Learning and Inference Is Impaired in the Nonclinical Continuum of Psychosis. Journal of Neuroscience, 2020, 40, 6759-6769.	3.6	13
13	Detecting (Un)seen Change: The Neural Underpinnings of (Un)conscious Prediction Errors. Frontiers in Systems Neuroscience, 2020, 14, 541670.	2.5	5
14	Aberrant connectivity in auditory precision encoding in schizophrenia spectrum disorder and across the continuum of psychotic-like experiences. Schizophrenia Research, 2020, 222, 185-194.	2.0	3
15	Multiâ€dimensional predictions of psychotic symptoms via machine learning. Human Brain Mapping, 2020, 41, 5151-5163.	3.6	8
16	The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews Neuroscience, 2020, 21, 264-276.	10.2	59
17	Global effects of feature-based attention depend on surprise. Neurolmage, 2020, 215, 116785.	4.2	8
18	Cognitive Capacity Limits Are Remediated by Practice-Induced Plasticity between the Putamen and Pre-Supplementary Motor Area. ENeuro, 2020, 7, ENEURO.0139-20.2020.	1.9	2

#	Article	IF	Citations
19	Predictive coding of visual motion in both monocular and binocular human visual processing. Journal of Vision, 2019, 19, 3.	0.3	29
20	Attention promotes the neural encoding of prediction errors. PLoS Biology, 2019, 17, e2006812.	5.6	61
21	Auditory white matter pathways are associated with effective connectivity of auditory prediction errors within a fronto-temporal network. Neurolmage, 2019, 195, 454-462.	4.2	11
22	Individuals with 22q11.2 deletion syndrome show intact prediction but reduced adaptation in responses to repeated sounds: Evidence from Bayesian mapping. Neurolmage: Clinical, 2019, 22, 101721.	2.7	6
23	Alteration of functional brain architecture in 22q11.2 deletion syndrome – Insights into susceptibility for psychosis. Neurolmage, 2019, 190, 154-171.	4.2	18
24	White matter connectivity reductions in the preâ€clinical continuum of psychosis: A connectome study. Human Brain Mapping, 2019, 40, 529-537.	3.6	19
25	An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. ELife, 2019, 8, .	6.0	77
26	Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome. Schizophrenia Research, 2018, 197, 328-336.	2.0	24
27	Bayesian Mapping Reveals That Attention Boosts Neural Responses to Predicted and Unpredicted Stimuli. Cerebral Cortex, 2018, 28, 1771-1782.	2.9	37
28	Sensory prediction errors in the continuum of psychosis. Schizophrenia Research, 2018, 191, 109-122.	2.0	57
29	Bayesian Model Selection Maps for Group Studies Using M/EEG Data. Frontiers in Neuroscience, 2018, 12, 598.	2.8	10
30	Prediction of Speech Sounds Is Facilitated by a Functional Fronto-Temporal Network. Frontiers in Neural Circuits, 2018, 12, 43.	2.8	6
31	A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion. Journal of Neuroscience, 2017, 37, 3864-3874.	3.6	80
32	Timing in Predictive Coding: The Roles of Task Relevance and Global Probability. Journal of Cognitive Neuroscience, 2017, 29, 780-792.	2.3	14
33	Auditory prediction errors as individual biomarkers of schizophrenia. Neurolmage: Clinical, 2017, 15, 264-273.	2.7	37
34	The Unpredictive Brain Under Threat: A Neurocomputational Account of Anxious Hypervigilance. Biological Psychiatry, 2017, 82, 447-454.	1.3	66
35	Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand. Npj Science of Learning, 2016, 1, 16006.	2.8	29
36	Sensory Deviancy Detection Measured Directly Within the Human Nucleus Accumbens. Cerebral Cortex, 2016, 26, 1168-1175.	2.9	21

#	Article	IF	CITATIONS
37	The maturation of mismatch negativity networks in normal adolescence. Clinical Neurophysiology, 2016, 127, 520-529.	1.5	22
38	Development of effective connectivity in the core network for face perception. Human Brain Mapping, 2015, 36, 2161-2173.	3.6	22
39	Empirical Bayes for Group (DCM) Studies: A Reproducibility Study. Frontiers in Human Neuroscience, 2015, 9, 670.	2.0	41
40	Time-Varying Effective Connectivity during Visual Object Naming as a Function of Semantic Demands. Journal of Neuroscience, 2015, 35, 8768-8776.	3.6	17
41	Sparse network-based models for patient classification using fMRI. Neurolmage, 2015, 105, 493-506.	4.2	151
42	Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. Neurolmage, 2015, 120, 362-370.	4.2	59
43	Effective Connectivity Reveals Right-Hemisphere Dominance in Audiospatial Perception: Implications for Models of Spatial Neglect. Journal of Neuroscience, 2014, 34, 5003-5011.	3.6	74
44	A mechanistic model of mismatch negativity in the ageing brain. Clinical Neurophysiology, 2014, 125, 1774-1782.	1.5	25
45	Subcortical amygdala pathways enable rapid face processing. NeuroImage, 2014, 102, 309-316.	4.2	88
46	Network reconfiguration and working memory impairment in mesial temporal lobe epilepsy. Neurolmage, 2013, 72, 48-54.	4.2	46
47	Modelling Trial-by-Trial Changes in the Mismatch Negativity. PLoS Computational Biology, 2013, 9, e1002911.	3.2	137
48	Outlier Responses Reflect Sensitivity to Statistical Structure in the Human Brain. PLoS Computational Biology, 2013, 9, e1002999.	3.2	118
49	A Neurocomputational Model of the Mismatch Negativity. PLoS Computational Biology, 2013, 9, e1003288.	3.2	96
50	Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis?. Cerebral Cortex, 2012, 22, 1225-1236.	2.9	56
51	Brain Connectivity in Disorders of Consciousness. Brain Connectivity, 2012, 2, 1-10.	1.7	85
52	Brain Connectivity: The Feel ofÂBlindsight. Current Biology, 2012, 22, R599-R600.	3.9	6
53	Dynamic Causal Modelling of epileptic seizure propagation pathways: A combined EEG–fMRI study. Neurolmage, 2012, 62, 1634-1642.	4.2	62
54	Functional Evidence for a Dual Route to Amygdala. Current Biology, 2012, 22, 129-134.	3.9	81

#	Article	IF	CITATIONS
55	Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State. Science, 2011, 332, 858-862.	12.6	444
56	Surprise Leads to Noisier Perceptual Decisions. I-Perception, 2011, 2, 112-120.	1.4	11
57	Response to Comment on "Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State― Science, 2011, 334, 1203-1203.	12.6	45
58	3.8 Analyzing Effective Connectivity with EEG and MEG. , 2010, , 235-250.		0
59	Dynamic causal modeling for EEG and MEG. Human Brain Mapping, 2009, 30, 1866-1876.	3.6	186
60	The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 2009, 120, 453-463.	1.5	1,109
61	Repetition suppression and plasticity in the human brain. Neurolmage, 2009, 48, 269-279.	4.2	192
62	Dynamic Causal Modeling of the Response to Frequency Deviants. Journal of Neurophysiology, 2009, 101, 2620-2631.	1.8	173
63	Dynamic causal modelling for EEG and MEG. Cognitive Neurodynamics, 2008, 2, 121-136.	4.0	183
64	The functional anatomy of the MMN: A DCM study of the roving paradigm. NeuroImage, 2008, 42, 936-944.	4.2	392
65	Evoked brain responses are generated by feedback loops. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20961-20966.	7.1	241
66	Dynamic causal modelling of evoked responses: The role of intrinsic connections. Neurolmage, 2007, 36, 332-345.	4.2	120
67	Dynamic causal modelling of evoked potentials: A reproducibility study. Neurolmage, 2007, 36, 571-580.	4.2	205