List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7506019/publications.pdf Version: 2024-02-01

DINCOINCL

#	Article	IF	CITATIONS
1	GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects. Cell, 2010, 142, 687-698.	28.9	2,013
2	Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate InÂVivo and InÂVitro Insulin Sensitivity. Cell, 2017, 171, 372-384.e12.	28.9	858
3	Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nature Medicine, 2012, 18, 1407-1412.	30.7	751
4	Ablation of CD11c-Positive Cells Normalizes Insulin Sensitivity in Obese Insulin Resistant Animals. Cell Metabolism, 2008, 8, 301-309.	16.2	708
5	Inflammation Is Necessary for Long-Term but Not Short-Term High-Fat Diet–Induced Insulin Resistance. Diabetes, 2011, 60, 2474-2483.	0.6	452
6	An inhibitor of the protein kinases TBK1 and IKK-É [,] improves obesity-related metabolic dysfunctions in mice. Nature Medicine, 2013, 19, 313-321.	30.7	364
7	LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nature Medicine, 2015, 21, 239-247.	30.7	252
8	Adipocyte NCoR Knockout Decreases PPARÎ ³ Phosphorylation and Enhances PPARÎ ³ Activity and Insulin Sensitivity. Cell, 2011, 147, 815-826.	28.9	246
9	A PPARγ–FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature, 2012, 485, 391-394.	27.8	240
10	Brain PPAR-γ promotes obesity and is required for the insulin–sensitizing effect of thiazolidinediones. Nature Medicine, 2011, 17, 618-622.	30.7	214
11	Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 2016, 167, 973-984.e12.	28.9	214
12	Functional Heterogeneity of CD11c-positive Adipose Tissue Macrophages in Diet-induced Obese Mice. Journal of Biological Chemistry, 2010, 285, 15333-15345.	3.4	200
13	NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing Omega 3 Fatty Acids. Cell, 2013, 155, 200-214.	28.9	149
14	Adipocyte SIRT1 knockout promotes PPARÎ ³ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Molecular Metabolism, 2015, 4, 378-391.	6.5	129
15	Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. Journal of Clinical Investigation, 2017, 127, 1019-1030.	8.2	94
16	Peroxisome Proliferator-Activated Receptor-γ Transcriptionally Up-Regulates Hormone-Sensitive Lipase via the Involvement of Specificity Protein-1. Endocrinology, 2006, 147, 875-884.	2.8	83
17	SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20021-20026.	7.1	83
18	Glucocorticoids and Thiazolidinediones Interfere with Adipocyte-mediated Macrophage Chemotaxis and Recruitment. Journal of Biological Chemistry, 2009, 284, 31223-31235.	3.4	74

#	Article	IF	CITATIONS
19	Hypermetabolism, Hyperphagia, and Reduced Adiposity in Tankyrase-Deficient Mice. Diabetes, 2009, 58, 2476-2485.	0.6	67
20	Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids in Health and Disease, 2020, 19, 121.	3.0	66
21	GPR105 Ablation Prevents Inflammation and Improves Insulin Sensitivity in Mice with Diet-Induced Obesity. Journal of Immunology, 2012, 189, 1992-1999.	0.8	65
22	Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1137-E1146.	3.5	62
23	HDAC6-mediated acetylation of lipid droplet–binding protein CIDEC regulates fat-induced lipid storage. Journal of Clinical Investigation, 2017, 127, 1353-1369.	8.2	58
24	The PPARα /γ dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats. British Journal of Pharmacology, 2006, 148, 610-618.	5.4	54
25	Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues. Journal of Biological Chemistry, 2013, 288, 10722-10735.	3.4	50
26	G protein–coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice. Journal of Clinical Investigation, 2012, 122, 2444-2453.	8.2	49
27	TRIB3 reduces CD8 ⁺ T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Science Translational Medicine, 2022, 14, eabf0992.	12.4	49
28	p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5838-5843.	7.1	47
29	FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Scientific Reports, 2015, 5, 11382.	3.3	45
30	p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Reports, 2016, 14, 255-268.	6.4	42
31	Regulation of Chemokine and Chemokine Receptor Expression by PPARÎ ³ in Adipocytes and Macrophages. PLoS ONE, 2012, 7, e34976.	2.5	42
32	A new antidiabetic compound attenuates inflammation and insulin resistance in Zucker diabetic fatty rats. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1036-E1048.	3.5	38
33	<i>In Vitro</i> and <i>In Vivo</i> Characterizations of Chiglitazar, a Newly Identified PPAR Pan-Agonist. PPAR Research, 2012, 2012, 1-13.	2.4	37
34	Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects. Nature Communications, 2021, 12, 7256.	12.8	32
35	Origin and distribution of hydrogen sulfide in the Yuanba gas field, Sichuan Basin, Southwest China. Marine and Petroleum Geology, 2016, 75, 220-239.	3.3	27
36	Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function. Journal of Clinical Investigation, 2018, 128, 1458-1470.	8.2	27

#	Article	IF	CITATIONS
37	Synthesis and evaluation of azaindole-α-alkyloxyphenylpropionic acid analogues as PPARα/γ agonists. Bioorganic and Medicinal Chemistry, 2006, 14, 866-874.	3.0	26
38	Prognostic evaluation of postoperative adjuvant therapy for operable cervical cancer: 10 years' experience of National Cancer Center in China. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2017, 29, 510-520.	2.2	22
39	Low glucose enhanced metformin's inhibitory effect on pancreatic cancer cells by suppressing glycolysis and inducing energy stress via up-regulation of miR-210-5p. Cell Cycle, 2020, 19, 2168-2181.	2.6	22
40	The role of dietary fat in obesity-induced insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E989-E997.	3.5	21
41	Inducible Nitric Oxide Synthase Deficiency in Myeloid Cells Does Not Prevent Diet-Induced Insulin Resistance. Molecular Endocrinology, 2010, 24, 1413-1422.	3.7	19
42	Potassium 2-(1-Hydroxypentyl)-Benzoate Improves Memory Deficits and Attenuates Amyloid and <i>Ï,,</i> Pathologies in a Mouse Model of Alzheimer's Disease. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 361-374.	2.5	18
43	Inflammation and insulin resistance: New targets encourage new thinking. BioEssays, 2017, 39, 1700036.	2.5	18
44	Characterization of a Novel Glucokinase Activator in Rat and Mouse Models. PLoS ONE, 2014, 9, e88431.	2.5	17
45	C-Peptide: A Mediator of the Association Between Serum Uric Acid to Creatinine Ratio and Non-Alcoholic Fatty Liver Disease in a Chinese Population With Normal Serum Uric Acid Levels. Frontiers in Endocrinology, 2020, 11, 600472.	3.5	15
46	Hepatic DNAJB9 Drives Anabolic Biasing to Reduce Steatosis and Obesity. Cell Reports, 2020, 30, 1835-1847.e9.	6.4	14
47	Sex-Specific Negative Association between Iron Intake and Cellular Aging Markers: Mediation Models Involving TNF <i>α</i> . Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	4.0	13
48	Morus alba L. (Sangzhi) Alkaloids Promote Insulin Secretion, Restore Diabetic β-Cell Function by Preventing Dedifferentiation and Apoptosis. Frontiers in Pharmacology, 2022, 13, 841981.	3.5	12
49	Berberine combined with stachyose improves glycometabolism and gut microbiota through regulating colonic microRNA and gene expression in diabetic rats. Life Sciences, 2021, 284, 119928.	4.3	10
50	Effect of GCP-02, a PPARalpha/gamma dual activator, on glucose and lipid metabolism in insulin-resistant mice. European Journal of Pharmacology, 2008, 580, 277-283.	3.5	8
51	Association Between Leukocyte Mitochondrial DNA Copy Number and Non-alcoholic Fatty Liver Disease in a Chinese Population Is Mediated by 8-Oxo-2′-Deoxyguanosine. Frontiers in Medicine, 2020, 7, 536.	2.6	8
52	Negative association between antioxidant vitamin intake and non-alcoholic fatty liver disease in Chinese non-diabetic adults: mediation models involving superoxide dismutase. Free Radical Research, 2020, 54, 670-677.	3.3	7
53	Synthesis and anti-diabetic activity of (RS)-2-ethoxy-3-{4-[2-(4-trifluoro-8methanesulfonyloxy-phenyl)-ethoxy]-phenyl}-propionic acid. Acta Pharmacologica Sinica, 2006, 27, 597-602.	6.1	6
54	Sulfate Sources of Thermal Sulfate Reduction (TSR) in the Permian Changxing and Triassic Feixianguan Formations, Northeastern Sichuan Basin, China. Geofluids, 2019, 2019, 1-13.	0.7	6

#	Article	IF	CITATIONS
55	Negative Association between Caloric Intake and Estimated Glomerular Filtration Rate in a Chinese Population: Mediation Models Involving Mitochondrial Function. Gerontology, 2020, 66, 439-446.	2.8	5
56	Regulation of immune-related diseases by multiple factors of chromatin, exosomes, microparticles, vaccines, oxidative stress, dormancy, protein quality control, inflammation and microenvironment: a meeting report of 2017 International Workshop of the Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine on Tumor Immunology. Acta Pharmaceutica Sinica B, 2017, 7, 532-540.	12.0	3
57	Quantitative Prediction of Fractures in Shale Using the Lithology Combination Index. Minerals (Basel,) Tj ETQq1 1	0,784314 2.0	l rgBT /Over
58	Regulation of chemokine and chemokine receptor expression by PPARG in adipocytes and macrophages. Journal of Translational Medicine, 2011, 9, .	4.4	2
59	Association between glucose fluctuation during 2-hour oral glucose tolerance test, inflammation and oxidative stress markers, and Î2-cell function in a Chinese population with normal glucose tolerance. Annals of Translational Medicine, 2021, 9, 327-327.	1.7	1
60	Inducible Nitric Oxide Synthase Deficiency in Myeloid Cells Does Not Prevent Diet-Induced Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2519-2519.	3.6	0