André Longtin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7505881/publications.pdf

Version: 2024-02-01

138 papers 10,719 citations

44042 48 h-index 100 g-index

147 all docs

147 docs citations

times ranked

147

6370 citing authors

#	Article	IF	Citations
1	Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 1992, 58, 77-94.	1.3	3,281
2	Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Physical Review Letters, 1991, 67, 656-659.	2.9	450
3	A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vision Research, 2002, 42, 621-636.	0.7	310
4	Multistability and Delayed Recurrent Loops. Physical Review Letters, 1996, 76, 708-711.	2.9	304
5	Small delay approximation of stochastic delay differential equations. Physical Review E, 1999, 59, 3970-3982.	0.8	302
6	Autonomous stochastic resonance in bursting neurons. Physical Review E, 1997, 55, 868-876.	0.8	280
7	Negative Interspike Interval Correlations Increase the Neuronal Capacity for Encoding Time-Dependent Stimuli. Journal of Neuroscience, 2001, 21, 5328-5343.	1.7	191
8	Complex oscillations in the human pupil light reflex with "mixed―and delayed feedback. Mathematical Biosciences, 1988, 90, 183-199.	0.9	185
9	Spike-Frequency Adaptation Separates Transient Communication Signals from Background Oscillations. Journal of Neuroscience, 2005, 25, 2312-2321.	1.7	173
10	Non-classical receptive field mediates switch in a sensory neuron's frequency tuning. Nature, 2003, 423, 77-81.	13.7	168
11	Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature, 2003, 421, 539-543.	13.7	152
12	Stochastic resonance in models of neuronal ensembles. Physical Review E, 1997, 55, 1798-1808.	0.8	150
13	Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Physical Review E, 2005, 72, 061919.	0.8	137
14	Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Physical Review E, 2002, 66, 031916.	0.8	135
15	Noise and critical behavior of the pupil light reflex at oscillation onset. Physical Review A, 1990, 41, 6992-7005.	1.0	133
16	Stochastic and Deterministic Resonances for Excitable Systems. Physical Review Letters, 1998, 81, 4012-4015.	2.9	119
17	Rate processes in a delayed, stochastically driven, and overdamped system. Physical Review E, 2000, 61, 4906-4914.	0.8	114
18	Ghostbursting: a novel neuronal burst mechanism. Journal of Computational Neuroscience, 2002, 12, 5-25.	0.6	113

#	Article	IF	CITATIONS
19	Noise Shaping by Interval Correlations Increases Information Transfer. Physical Review Letters, 2004, 92, 080601.	2.9	111
20	Suprathreshold Stochastic Firing Dynamics with Memory inP-Type Electroreceptors. Physical Review Letters, 2000, 85, 1576-1579.	2.9	110
21	Oscillatory Activity in Electrosensory Neurons Increases with the Spatial Correlation of the Stochastic Input Stimulus. Physical Review Letters, 2004, 93, 048101.	2.9	105
22	Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift–Hohenberg equation. Physica D: Nonlinear Phenomena, 2008, 237, 755-773.	1.3	103
23	A Synchronization-Desynchronization Code for Natural Communication Signals. Neuron, 2006, 52, 347-358.	3.8	98
24	Subtractive and Divisive Inhibition: Effect of Voltage-Dependent Inhibitory Conductances and Noise. Neural Computation, 2001, 13, 227-248.	1.3	97
25	Analytic Expressions for Rate and CV of a Type I Neuron Driven by White Gaussian Noise. Neural Computation, 2003, 15, 1761-1788.	1.3	95
26	Bistability and the dynamics of periodically forced sensory neurons. Biological Cybernetics, 1994, 70, 569-578.	0.6	94
27	The cellular basis for parallel neural transmission of a high-frequency stimulus and its low-frequency envelope. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14596-14601.	3.3	93
28	Linear Versus Nonlinear Signal Transmission in Neuron Models With Adaptation Currents or Dynamic Thresholds. Journal of Neurophysiology, 2010, 104, 2806-2820.	0.9	93
29	Solution multistability in firstâ€order nonlinear differential delay equations. Chaos, 1993, 3, 167-176.	1.0	92
30	Is There a Nonadditive Interaction Between Spontaneous and Evoked Activity? Phase-Dependence and Its Relation to the Temporal Structure of Scale-Free Brain Activity. Cerebral Cortex, 2017, 27, bhv288.	1.6	92
31	Encoding with Bursting, Subthreshold Oscillations, and Noise in Mammalian Cold Receptors. Neural Computation, 1996, 8, 215-255.	1.3	90
32	Interspike Interval Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-Fire Model with Threshold Fatigue. Neural Computation, 2003, 15, 253-278.	1.3	86
33	Synchronization of delay-differential equations with application to private communication. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 244, 59-70.	0.9	84
34	Efficient computation via sparse coding in electrosensory neural networks. Current Opinion in Neurobiology, 2011, 21, 752-760.	2.0	84
35	Complex dynamics and bifurcations in neurology. Journal of Theoretical Biology, 1989, 138, 129-147.	0.8	76
36	The temporal signature of self: Temporal measures of restingâ€state EEG predict selfâ€consciousness. Human Brain Mapping, 2019, 40, 789-803.	1.9	76

#	Article	IF	CITATIONS
37	Contrast coding in the electrosensory system: parallels with visual computation. Nature Reviews Neuroscience, 2015, 16, 733-744.	4.9	71
38	Spatial Acuity and Prey Detection in Weakly Electric Fish. PLoS Computational Biology, 2007, 3, e38.	1.5	69
39	Effects of the anesthetic agent propofol on neural populations. Cognitive Neurodynamics, 2010, 4, 37-59.	2.3	67
40	Interspike interval attractors from chaotically driven neuron models. Physica D: Nonlinear Phenomena, 1997, 104, 184-204.	1.3	66
41	Modeling the electric field of weakly electric fish. Journal of Experimental Biology, 2006, 209, 3636-3651.	0.8	66
42	Broadband Coding with Dynamic Synapses. Journal of Neuroscience, 2009, 29, 2076-2087.	1.7	62
43	Cellular and circuit properties supporting different sensory coding strategies in electric fish and other systems. Current Opinion in Neurobiology, 2012, 22, 686-692.	2.0	62
44	Model of Gamma Frequency Burst Discharge Generated by Conditional Backpropagation. Journal of Neurophysiology, 2001, 86, 1523-1545.	0.9	60
45	Threshold fatigue and information transfer. Journal of Computational Neuroscience, 2007, 23, 301-311.	0.6	58
46	Active sensing associated with spatial learning reveals memory-based attention in an electric fish. Journal of Neurophysiology, 2016, 115, 2577-2592.	0.9	58
47	Evaluation of pupil constriction and dilation from cycling measurements. Vision Research, 1990, 30, 515-525.	0.7	54
48	Frequency-Tuned Cerebellar Channels and Burst-Induced LTD Lead to the Cancellation of Redundant Sensory Inputs. Journal of Neuroscience, 2011, 31, 11028-11038.	1.7	54
49	Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry. Physica D: Nonlinear Phenomena, 2002, 166, 131-146.	1.3	52
50	Delayed excitatory and inhibitory feedback shape neural information transmission. Physical Review E, 2005, 72, 051917.	0.8	49
51	Coding Conspecific Identity and Motion in the Electric Sense. PLoS Computational Biology, 2012, 8, e1002564.	1.5	49
52	Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Frontiers in Computational Neuroscience, 2014, 8, 107.	1.2	47
53	A Dynamic Dendritic Refractory Period Regulates Burst Discharge in the Electrosensory Lobe of Weakly Electric Fish. Journal of Neuroscience, 2003, 23, 1524-1534.	1.7	46
54	To Burst or Not to Burst?. Journal of Computational Neuroscience, 2004, 17, 127-136.	0.6	44

#	Article	IF	Citations
55	Effect of noise on the tuning properties of excitable systems. Chaos, Solitons and Fractals, 2000, 11, 1835-1848.	2.5	43
56	Additive Global Noise Delays Turing Bifurcations. Physical Review Letters, 2007, 98, 230601.	2.9	43
57	Comparison of Coding Capabilities of Type I and Type II Neurons. Journal of Computational Neuroscience, 2004, 16, 299-313.	0.6	42
58	Noise-induced transitions at a Hopf bifurcation in a first-order delay-differential equation. Physical Review A, 1991, 44, 4801-4813.	1.0	40
59	Power spectra and dynamical invariants for delay-differential and difference equations. Physica D: Nonlinear Phenomena, 1998, 113, 1-25.	1.3	38
60	Noise-induced stabilization of bumps in systems with long-range spatial coupling. Physica D: Nonlinear Phenomena, 2001, 160, 149-172.	1.3	38
61	Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs. Biological Cybernetics, 2008, 98, 479-490.	0.6	38
62	Controlling chaos to store information in delay-differential equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 205, 18-24.	0.9	37
63	Postsynaptic Receptive Field Size and Spike Threshold Determine Encoding of High-Frequency Information Via Sensitivity to Synchronous Presynaptic Activity. Journal of Neurophysiology, 2009, 101, 1160-1170.	0.9	37
64	Delayed visual feedback reveals distinct time scales in balance control. Neuroscience Letters, 2009, 452, 37-41.	1.0	35
65	Type I burst excitability. Journal of Computational Neuroscience, 2003, 14, 329-342.	0.6	33
66	The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network: Computation in Neural Systems, 2003, 14, 803-824.	2.2	33
67	Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron. Journal of Theoretical Biology, 2005, 232, 505-521.	0.8	33
68	A time-stamp mechanism may provide temporal information necessary for egocentric to allocentric spatial transformations. ELife, $2018, 7, .$	2.8	32
69	Feedback-induced gain control in stochastic spiking networks. Biological Cybernetics, 2009, 100, 475-489.	0.6	31
70	Comment on "Characterization of Subthreshold Voltage Fluctuations in Neuronal Membranes,―by M. Rudolph and A. Destexhe. Neural Computation, 2006, 18, 1896-1931.	1.3	30
71	Noise-induced divisive gain control in neuron models. BioSystems, 2002, 67, 147-156.	0.9	28
72	Biophysical information representation in temporally correlated spike trains. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21973-21978.	3.3	27

#	Article	IF	CITATIONS
73	A Neural Code for Looming and Receding Motion Is Distributed over a Population of Electrosensory ON and OFF Contrast Cells. Journal of Neuroscience, 2014, 34, 5583-5594.	1.7	27
74	Speed-invariant encoding of looming object distance requires power law spike rate adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13624-13629.	3.3	26
75	Enhanced sensory sampling precedes self-initiated locomotion in an electric fish. Journal of Experimental Biology, 2014, 217, 3615-3628.	0.8	26
76	Determinants of Brain Rhythm Burst Statistics. Scientific Reports, 2019, 9, 18335.	1.6	25
77	Chaos control in multistable delay-differential equations and their singular limit maps. Physical Review E, 1998, 58, 410-422.	0.8	24
78	A Two-Variable Model of Somatic–Dendritic Interactions in a Bursting Neuron. Bulletin of Mathematical Biology, 2002, 64, 829-860.	0.9	24
79	Neural dynamics of envelope coding. Mathematical Biosciences, 2008, 214, 87-99.	0.9	24
80	The neural dynamics of sensory focus. Nature Communications, 2015, 6, 8764.	5.8	24
81	A stochastic-field description of finite-size spiking neural networks. PLoS Computational Biology, 2017, 13, e1005691.	1.5	24
82	Dynamics of Deterministic and Stochastic Paired Excitatoryâ€"Inhibitory Delayed Feedback. Neural Computation, 2003, 15, 2779-2822.	1.3	21
83	Learning Contrast-Invariant Cancellation of Redundant Signals in Neural Systems. PLoS Computational Biology, 2013, 9, e1003180.	1.5	20
84	Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system. Journal of Neurophysiology, 2015, 114, 2804-2815.	0.9	19
85	The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network: Computation in Neural Systems, 2003, 14, 803-824.	2.2	19
86	Parsing Out the Variability of Transmission at Central Synapses Using Optical Quantal Analysis. Frontiers in Synaptic Neuroscience, 2019, 11, 22.	1.3	18
87	Weak signal amplification and detection by higher-order sensory neurons. Journal of Neurophysiology, 2016, 115, 2158-2175.	0.9	17
88	Prestimulus dynamics blend with the stimulus in neural variability quenching. NeuroImage, 2021, 238, 118160.	2.1	17
89	The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network: Computation in Neural Systems, 2003, 14, 803-24.	2.2	16
90	Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays. Frontiers in Computational Neuroscience, 2014, 8, 19.	1.2	15

#	Article	IF	CITATIONS
91	Driving neural oscillations with correlated spatial input and topographic feedback. Physical Review E, 2008, 78, 021911.	0.8	14
92	Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish. Journal of Visualized Experiments, $2014, , .$	0.2	13
93	Nonstationary Stochastic Dynamics Underlie Spontaneous Transitions between Active and Inactive Behavioral States. ENeuro, 2017, 4, ENEURO.0355-16.2017.	0.9	13
94	Kinetics of Fast Short-Term Depression Are Matched to Spike Train Statistics to Reduce Noise. Journal of Neurophysiology, 2010, 103, 3337-3348.	0.9	12
95	Balanced ionotropic receptor dynamics support signal estimation via voltage-dependent membrane noise. Journal of Neurophysiology, 2016, 115, 530-545.	0.9	12
96	Electrosensory Contrast Signals for Interacting Weakly Electric Fish. Frontiers in Integrative Neuroscience, 2019, 13, 36.	1.0	12
97	Variability of the electric organ discharge interval duration in resting Gymnotus carapo. Biological Cybernetics, 2001, 84, 309-321.	0.6	11
98	Mixed selectivity coding of sensory and motor social signals in the thalamus of a weakly electric fish. Current Biology, 2022, 32, 51-63.e3.	1.8	11
99	Reduced dynamics for delayed systems with harmonic or stochastic forcing. Chaos, 2012, 22, 043121.	1.0	10
100	Inference of a Mesoscopic Population Model from Population Spike Trains. Neural Computation, 2020, 32, 1448-1498.	1.3	10
101	ISI CORRELATIONS AND INFORMATION TRANSFER. Fluctuation and Noise Letters, 2004, 04, L195-L205.	1.0	9
102	Linear noise approximation for oscillations in a stochastic inhibitory network with delay. Physical Review E, 2014, 90, 012702.	0.8	9
103	Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study. Scientific Reports, 2015, 5, 15780.	1.6	9
104	Vibrational resonance in a neuron–astrocyte coupled model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200267.	1.6	9
105	Attractor dynamics in local neuronal networks. Frontiers in Neural Circuits, 2014, 8, 22.	1.4	8
106	Optimal Design for Estimation in Diffusion Processes from First Hitting Times. SIAM-ASA Journal on Uncertainty Quantification, 2017, 5, 88-110.	1.1	8
107	Mean, covariance, and effective dimension of stochastic distributed delay dynamics. Chaos, 2017, 27, 114322.	1.0	8
108	Linking demyelination to compound action potential dispersion with a spike-diffuse-spike approach. Journal of Mathematical Neuroscience, 2019, 9, 3.	2.4	8

#	Article	IF	CITATIONS
109	ENCODING CARRIER AMPLITUDE MODULATIONS VIA STOCHASTIC PHASE SYNCHRONIZATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 2447-2463.	0.7	7
110	Evolution of moments and correlations in nonrenewal escape-time processes. Physical Review E, 2017, 95, 052127.	0.8	7
111	Data-driven inference for stationary jump-diffusion processes with application to membrane voltage fluctuations in pyramidal neurons. Journal of Mathematical Neuroscience, 2019, 9, 6.	2.4	7
112	Temperature Fluctuations for a System in Contact with a Heat Bath. Journal of Statistical Physics, 2013, 153, 1132-1142.	0.5	6
113	Oscillatorylike behavior in feedforward neuronal networks. Physical Review E, 2015, 92, 012703.	0.8	6
114	Amplitude-phase description of stochastic neural oscillators across the Hopf bifurcation. Physical Review Research, 2021, 3, .	1.3	6
115	PHASE LOCKING AND RESONANCES FOR STOCHASTIC EXCITABLE SYSTEMS. Fluctuation and Noise Letters, 2002, 02, L183-L203.	1.0	5
116	A stochastic model of input effectiveness during irregular gamma rhythms. Journal of Computational Neuroscience, 2016, 40, 85-101.	0.6	5
117	Brain rhythm bursts are enhanced by multiplicative noise. Chaos, 2021, 31, 013117.	1.0	5
118	Phase dynamics of delay-coupled quasi-cycles with application to brain rhythms. Physical Review Research, 2020, 2 , .	1.3	5
119	Multi-delay complexity collapse. Physical Review Research, 2020, 2, .	1.3	5
120	Non-additive activity modulation during a decision making task involving tactic selection. Cognitive Neurodynamics, 2022, 16 , $117-133$.	2.3	4
121	Mechanisms of Flexible Information Sharing through Noisy Oscillations. Biology, 2021, 10, 764.	1.3	4
122	Coherence depression in stochastic excitable systems with two-frequency forcing. Chaos, 2011, 21, 047507.	1.0	3
123	Enhanced Signal Detection by Adaptive Decorrelation of Interspike Intervals. Neural Computation, 2021, 33, 341-375.	1.3	3
124	Coding of information in models of tuberous electroreceptors. Mathematical Biosciences, 2004, 188, 157-174.	0.9	2
125	Interspike interval correlations in networks of inhibitory integrate-and-fire neurons. Physical Review E, 2019, 99, 032402.	0.8	2
126	Dynamical invariants and inverse period-doubling cascades in multi-delay systems. Chaos, 2021, 31, 103129.	1.0	2

#	ARTICLE	IF	CITATIONS
127	Stochastic aspects of neural phase locking to periodic signals. AIP Conference Proceedings, 2000, , .	0.3	1
128	Two-category Model of Task Allocation with Application to Ant Societies. Bulletin of Mathematical Biology, 2001, 63, 1125-1161.	0.9	1
129	Neuronal dynamics of sensory coding: the legacy of Jose Pedro Segundo. Biological Cybernetics, 2009, 100, 409-411.	0.6	1
130	Linear response theory for two neural populations applied to gamma oscillation generation. Physical Review E, 2013, 87, .	0.8	1
131	Centre of pressure during quiet stance and dual-task one month after mild traumatic brain injury: In adolescents. Journal of Concussion, 2018, 2, 205970021880491.	0.2	1
132	Non-monotonic accumulation of spike time variance during membrane potential oscillations. Biological Cybernetics, 2018, 112, 539-545.	0.6	1
133	Adiabatic and Non-adiabatic Resonances in Excitable Systems. , 2000, , 172-181.		1
134	Complexity Collapse, Fluctuating Synchrony, and Transient Chaos in Neural Networks With Delay Clusters. Frontiers in Systems Neuroscience, 2021, 15, 720744.	1.2	1
135	Transition rates for stochastic delay differential equations. AIP Conference Proceedings, 2000, , .	0.3	0
136	Signal cancellation in neural systems: encoding sensory input in the weakly electric fish. , 2012, , .		0
137	Learning to generalize. ELife, 2019, 8, .	2.8	0
138	Mutual information resonances in delay-coupled limit cycle and quasi-cycle brain rhythms. Biological Cybernetics, 2022, 116, 129-146.	0.6	0