
Roger E Koeppe Ii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7504780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Examination of pH dependency and orientation differences of membrane spanning alpha helices carrying a single or pair of buried histidine residues. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183501.	1.4	3
2	Lipid-Dependent Titration of Glutamic Acid at a Bilayer Membrane Interface. ACS Omega, 2021, 6, 8488-8494.	1.6	3
3	Illuminating Disorder Induced by Glu in a Stable Arg-Anchored Transmembrane Helix. ACS Omega, 2021, 6, 20611-20618.	1.6	1
4	Membrane electrostatics sensed by tryptophan anchors in hydrophobic model peptides depends on non-aromatic interfacial amino acids: implications in hydrophobic mismatch. Faraday Discussions, 2021, 232, 330-346.	1.6	3
5	Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183134.	1.4	0
6	Flanking aromatic residue competition influences transmembrane peptide helix dynamics. FEBS Letters, 2020, 594, 4280-4291.	1.3	1
7	Comparing Interfacial Trp, Interfacial His and pH Dependence for the Anchoring of Tilted Transmembrane Helical Peptides. Biomolecules, 2020, 10, 273.	1.8	3
8	Transmembrane Helix Orientation and Dynamics. , 2020, , 1-4.		0
9	Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide. Journal of Physical Chemistry B, 2019, 123, 8034-8047.	1.2	7
10	Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Doubleâ€Arginineâ€Containing Helical Peptides in Bilayer Membranes. ChemBioChem, 2019, 20, 2784-2792.	1.3	5
11	Antidepressants are modifiers of lipid bilayer properties. Journal of General Physiology, 2019, 151, 342-356.	0.9	48
12	Transmembrane Helix Integrity versus Fraying To Expose Hydrogen Bonds at a Membrane–Water Interface. Biochemistry, 2019, 58, 633-645.	1.2	10
13	Helix formation and stability in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2108-2117.	1.4	47
14	Wavelength-Selective Fluorescence of a Model Transmembrane Peptide: Constrained Dynamics of Interfacial Tryptophan Anchors. Journal of Fluorescence, 2018, 28, 1317-1323.	1.3	2
15	Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide. Biophysical Journal, 2018, 114, 2152-2164.	0.2	22
16	Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues. Biophysical Journal, 2018, 114, 2617-2629.	0.2	12
17	Influence of glutamic acid residues and pH on the properties of transmembrane helices. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 484-492.	1.4	12
18	Exchange of Gramicidin between Lipid Bilayers: Implications for the Mechanism of Channel Formation. Biophysical Journal, 2017, 113, 1757-1767.	0.2	18

#	Article	IF	CITATIONS
19	Characterizing Residue-Bilayer Interactions Using Gramicidin A as a Scaffold and Tryptophan Substitutions as Probes. Journal of Chemical Theory and Computation, 2017, 13, 5054-5064.	2.3	14
20	Juxtaâ€ŧerminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices. ChemBioChem, 2016, 17, 462-465.	1.3	16
21	Ionization Properties of Histidine Residues in the Lipid Bilayer Membrane Environment. Journal of Biological Chemistry, 2016, 291, 19146-19156.	1.6	26
22	Lipid bilayer thickness determines cholesterol's location in model membranes. Soft Matter, 2016, 12, 9417-9428.	1.2	61
23	Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices. Biochemistry, 2016, 55, 6337-6343.	1.2	13
24	Influence of Cholesterol on Single Arginine-Containing Transmembrane Helical Peptides. Biophysical Journal, 2015, 108, 553a.	0.2	1
25	Dynamic regulation of lipid–protein interactions. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1849-1859.	1.4	15
26	A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics. Journal of General Physiology, 2015, 146, 463-475.	0.9	35
27	Importance of indole NH hydrogen bonding in the organization and dynamics of gramicidin channels. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 419-428.	1.4	21
28	Ion-Induced Defect Permeation of Lipid Membranes. Biophysical Journal, 2014, 106, 586-597.	0.2	93
29	Comparisons of Interfacial Phe, Tyr, and Trp Residues as Determinants of Orientation and Dynamics for GWALP Transmembrane Peptides. Biochemistry, 2014, 53, 3637-3645.	1.2	39
30	Interactions of drugs and amphiphiles with membranes: modulation of lipid bilayer elastic properties by changes in acyl chain unsaturation and protonation. Faraday Discussions, 2013, 161, 461-480.	1.6	36
31	Buried lysine, but not arginine, titrates and alters transmembrane helix tilt. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1692-1695.	3.3	86
32	Single Tryptophan and Tyrosine Comparisons in the N-Terminal and C-Terminal Interface Regions of Transmembrane GWALP Peptides. Journal of Physical Chemistry B, 2013, 117, 13786-13794.	1.2	12
33	Phosphoinositides alter lipid bilayer properties. Journal of General Physiology, 2013, 141, 673-690.	0.9	23
34	Transmembrane Helix Orientation and Dynamics. , 2013, , 2655-2657.		0
35	Proline Kink Angle Distributions for GWALP23 in Lipid Bilayers of Different Thicknesses. Biochemistry, 2012, 51, 3554-3564.	1.2	11
36	Membrane Organization and Dynamics of "Inner Pair―and "Outer Pair―Tryptophan Residues in Gramicidin Channels. Journal of Physical Chemistry B, 2012, 116, 11056-11064.	1.2	19

Roger E Koeppe II

#	Article	IF	CITATIONS
37	Accommodation of a Central Arginine in a Transmembrane Peptide by Changing the Placement of Anchor Residues. Journal of Physical Chemistry B, 2012, 116, 12980-12990.	1.2	22
38	Properties of Membrane-Incorporated WALP Peptides That Are Anchored on Only One End. Biochemistry, 2012, 51, 10066-10074.	1.2	7
39	Tyrosine Replacing Tryptophan as an Anchor in GWALP Peptides. Biochemistry, 2012, 51, 2044-2053.	1.2	48
40	Response of GWALP Transmembrane Peptides to Changes in the Tryptophan Anchor Positions. Biochemistry, 2011, 50, 7522-7535.	1.2	17
41	Gramicidin A Backbone and Side Chain Dynamics Evaluated by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Experiments. II: Nuclear Magnetic Resonance Experiments. Journal of Physical Chemistry B, 2011, 115, 7427-7432.	1.2	5
42	The Membrane Interface Dictates Different Anchor Roles for "Inner Pair―and "Outer Pair―Tryptophan Indole Rings in Gramicidin A Channels. Biochemistry, 2011, 50, 4855-4866.	1.2	17
43	Gramicidin A Backbone and Side Chain Dynamics Evaluated by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Experiments. I: Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 7417-7426.	1.2	31
44	On the Combined Analysis of 2H and 15N/1H Solid-State NMR Data for Determination of Transmembrane Peptide Orientation and Dynamics. Biophysical Journal, 2011, 101, 2939-2947.	0.2	38
45	Gramicidin Channels as Cation Nanotubes. , 2011, , 11-30.		2
46	On the Treatment of Dynamics During Combined 2H GALA and 15N/1H PISEMA Analysis of Transmembrane Peptide Tilt using Solid-State NMR Data. Biophysical Journal, 2011, 100, 638a.	0.2	0
47	Effects of green tea catechins on gramicidin channel function and inferred changes in bilayer properties. FEBS Letters, 2011, 585, 3101-3105.	1.3	22
48	Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proceedings of the United States of America, 2010, 107, 15427-15430.	3.3	111
49	Charged or Aromatic Anchor Residue Dependence of Transmembrane Peptide Tilt. Journal of Biological Chemistry, 2010, 285, 31723-31730.	1.6	62
50	A Combined Experimental and Theoretical Study of Ion Solvation in Liquid <i>N</i> -Methylacetamide. Journal of the American Chemical Society, 2010, 132, 10847-10856.	6.6	35
51	Changes in Transmembrane Helix Alignment by Arginine Residues Revealed by Solid-State NMR Experiments and Coarse-Grained MD Simulations. Journal of the American Chemical Society, 2010, 132, 5803-5811.	6.6	78
52	Polar Groups in Membrane Channels: Consequences of Replacing Alanines with Serines in Membrane-Spanning Gramicidin Channels. Biochemistry, 2010, 49, 6856-6865.	1.2	6
53	Influence of Proline upon the Folding and Geometry of the WALP19 Transmembrane Peptide. Biochemistry, 2009, 48, 11883-11891.	1.2	28
54	Helical Distortion in Tryptophan- and Lysine-Anchored Membrane-Spanning α-Helices as a Function of Hydrophobic Mismatch: A Solid-State Deuterium NMR Investigation Using the Geometric Analysis of Labeled Alanines Method. Biophysical Journal, 2008, 94, 480-491.	0.2	40

#	Article	IF	CITATIONS
55	Role of Tryptophan Residues in Gramicidin Channel Organization and Function. Biophysical Journal, 2008, 95, 166-175.	0.2	39
56	Comparison of "Polarization Inversion with Spin Exchange at Magic Angle―and "Geometric Analysis of Labeled Alanines―Methods for Transmembrane Helix Alignment. Journal of the American Chemical Society, 2008, 130, 12584-12585.	6.6	56
57	Is There a Preferential Interaction between Cholesterol and Tryptophan Residues in Membrane Proteins?. Biochemistry, 2008, 47, 2638-2649.	1.2	26
58	The Preference of Tryptophan for Membrane Interfaces. Journal of Biological Chemistry, 2008, 283, 22233-22243.	1.6	93
59	Concerning Tryptophan and Protein–Bilayer Interactions. Journal of General Physiology, 2007, 130, 223-224.	0.9	18
60	Docosahexaenoic acid alters bilayer elastic properties. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9638-9643.	3.3	131
61	Multivariate Data Analysis for Enhanced Interpretation of Electrochemical Impedance Spectra of Gramicidinā^ Ion Interactions in Phospholipid Monolayers. Langmuir, 2007, 23, 5029-5032.	1.6	5
62	Curcumin is a Modulator of Bilayer Material Properties. Biochemistry, 2007, 46, 10384-10391.	1.2	132
63	Orientation and Motion of Tryptophan Interfacial Anchors in Membrane-Spanning Peptides. Biochemistry, 2007, 46, 7514-7524.	1.2	48
64	Bilayer Thickness and Membrane Protein Function: An Energetic Perspective. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 107-130.	18.3	738
65	Gramicidin Channels: Versatile Tools. , 2007, , 33-80.		14
66	Single-Molecule Methods for Monitoring Changes in Bilayer Elastic Properties. Methods in Molecular Biology, 2007, 400, 543-570.	0.4	35
67	Effect of Linker Length on Avidin Binding to Biotinylated Gramicidin A. International Journal of Peptide Research and Therapeutics, 2006, 12, 243-252.	0.9	4
68	Capsaicin Regulates Voltage-Dependent Sodium Channels by Altering Lipid Bilayer Elasticity. Molecular Pharmacology, 2005, 68, 680-689.	1.0	196
69	Gramicidin Channels. IEEE Transactions on Nanobioscience, 2005, 4, 10-20.	2.2	115
70	Importance of Tensor Asymmetry for the Analysis of2H NMR Spectra from Deuterated Aromatic Rings. Journal of the American Chemical Society, 2005, 127, 17488-17493.	6.6	19
71	Regulation of Sodium Channel Function by Bilayer Elasticity. Journal of General Physiology, 2004, 123, 599-621.	0.9	239
72	Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature, 2004, 430, 235-240.	13.7	271

Roger E Koeppe II

#	Article	IF	CITATIONS
73	Interaction of Gramicidin Derivatives with Phospholipid Monolayers. Langmuir, 2004, 20, 9291-9298.	1.6	32
74	Tilt Angles of Transmembrane Model Peptides in Oriented and Non-Oriented Lipid Bilayers as Determined by 2H Solid-State NMR. Biophysical Journal, 2004, 86, 3709-3721.	0.2	172
75	Genistein Can Modulate Channel Function by a Phosphorylation-Independent Mechanism:  Importance of Hydrophobic Mismatch and Bilayer Mechanics. Biochemistry, 2003, 42, 13646-13658.	1.2	138
76	Combined Experimental/Theoretical Refinement of Indole Ring Geometry Using Deuterium Magnetic Resonance and ab Initio Calculations. Journal of the American Chemical Society, 2003, 125, 12268-12276.	6.6	24
77	Interfacial Anchor Properties of Tryptophan Residues in Transmembrane Peptides Can Dominate over Hydrophobic Matching Effects in Peptideâ^'Lipid Interactionsâ€. Biochemistry, 2003, 42, 5341-5348.	1.2	251
78	Hydrophobic Mismatch between Helices and Lipid Bilayers. Biophysical Journal, 2003, 84, 379-385.	0.2	135
79	Hydrophobic Coupling of Lipid Bilayer Energetics to Channel Function. Journal of General Physiology, 2003, 121, 477-493.	0.9	85
80	Geometry and Intrinsic Tilt of a Tryptophan-Anchored Transmembrane α-Helix Determined by 2H NMR. Biophysical Journal, 2002, 83, 1479-1488.	0.2	161
81	Hydrophobic Matching Mechanism Investigated by Molecular Dynamics Simulations. Langmuir, 2002, 18, 1340-1351.	1.6	80
82	Peptide Backbone Chemistry and Membrane Channel Function:Â Effects of a Single Amide-to-Ester Replacement on Gramicidin Channel Structure and Functionâ€. Biochemistry, 2001, 40, 1460-1472.	1.2	10
83	Sensitivity of Single Membrane-Spanning α-Helical Peptides to Hydrophobic Mismatch with a Lipid Bilayer:  Effects on Backbone Structure, Orientation, and Extent of Membrane Incorporation. Biochemistry, 2001, 40, 5000-5010.	1.2	171
84	Interfacial Positioning and Stability of Transmembrane Peptides in Lipid Bilayers Studied by Combining Hydrogen/Deuterium Exchange and Mass Spectrometry. Journal of Biological Chemistry, 2001, 276, 34501-34508.	1.6	66
85	Desformylgramicidin: A Model Channel with an Extremely High Water Permeability. Biophysical Journal, 2000, 79, 2526-2534.	0.2	47
86	The Effect of Peptide/Lipid Hydrophobic Mismatch on the Phase Behavior of Model Membranes Mimicking the Lipid Composition in Escherichia coli Membranes. Biophysical Journal, 2000, 78, 2475-2485.	0.2	55
87	Neighboring Aliphatic/Aromatic Side Chain Interactions between Residues 9 and 10 in Gramicidin Channelsâ€. Biochemistry, 2000, 39, 2235-2242.	1.2	14
88	Tryptophan-Anchored Transmembrane Peptides Promote Formation of Nonlamellar Phases in Phosphatidylethanolamine Model Membranes in a Mismatch-Dependent Mannerâ€. Biochemistry, 2000, 39, 3124-3133.	1.2	58
89	Different Membrane Anchoring Positions of Tryptophan and Lysine in Synthetic Transmembrane α-Helical Peptides. Journal of Biological Chemistry, 1999, 274, 20839-20846.	1.6	298
90	[28] Design and characterization of gramicidin channels. Methods in Enzymology, 1999, 294, 525-550.	0.4	66

#	Article	IF	CITATIONS
91	Steric Interactions of Valines 1, 5, and 7 in [Valine 5, d-Alanine 8] Gramicidin A Channels. Biophysical Journal, 1999, 77, 1927-1935.	0.2	7
92	Modulation of Gramicidin Channel Structure and Function by the Aliphatic "Spacer―Residues 10, 12, and 14 between the Tryptophans. Biochemistry, 1999, 38, 1030-1039.	1.2	20
93	Design and Characterization of Gramicidin Channels with Side Chain or Backbone Mutations. Novartis Foundation Symposium, 1999, 225, 44-61.	1.2	2
94	Peptide Influences on Lipids. Novartis Foundation Symposium, 1999, 225, 170-187.	1.2	0
95	Influence of Lipid/Peptide Hydrophobic Mismatch on the Thickness of Diacylphosphatidylcholine Bilayers. A 2H NMR and ESR Study Using Designed Transmembrane α-Helical Peptides and Gramicidin A. Biochemistry, 1998, 37, 9333-9345.	1.2	248
96	Modulation of membrane structure and function by hydrophobic mismatch between proteins and lipids. Pure and Applied Chemistry, 1998, 70, 75-82.	0.9	20
97	Conformation of the Acylation Site of Palmitoylgramicidin in Lipid Bilayers of Dimyristoylphosphatidylcholineâ€. Biochemistry, 1996, 35, 3641-3648.	1.2	26
98	Induction of Nonbilayer Structures in Diacylphosphatidylcholine Model Membranes by Transmembrane α-Helical Peptides: Importance of Hydrophobic Mismatch and Proposed Role of Tryptophansâ€. Biochemistry, 1996, 35, 1037-1045.	1.2	286
99	Role of lysine-195 in the KMSKS sequence ofE. colitryptophanyl-tRNA synthetase. FEBS Letters, 1995, 363, 33-36.	1.3	7
100	Palmitoylation-Induced Conformational Changes of Specific Side Chains in the Gramicidin Transmembrane Channel. Biochemistry, 1995, 34, 9299-9306.	1.2	37
101	Role of the TIGN sequence in E. coli tryptophanyl-tRNA synthetase. BBA - Proteins and Proteomics, 1994, 1205, 223-229.	2.1	9
102	Gramicidin A/Short-Chain Phospholipid Dispersions: Chain Length Dependence of Gramicidin Conformation and Lipid Organization. Biochemistry, 1994, 33, 4291-4299.	1.2	66
103	Energetics of Heterodimer Formation among Gramicidin Analogues with an NH2-terminal Addition or Deletion. Journal of Molecular Biology, 1993, 231, 1102-1121.	2.0	63
104	Molecular and channel-forming characteristics of gramicidin K's: a family of naturally occurring acylated gramicidins. Biochemistry, 1992, 31, 7311-7319.	1.2	15
105	Orientation of the valine-1 side chain of the gramicidin transmembrane channel and implications for channel functioning. A deuterium NMR study. Biochemistry, 1992, 31, 11283-11290.	1.2	69
106	On the helix sense of gramicidin A single channels. Proteins: Structure, Function and Bioinformatics, 1992, 12, 49-62.	1.5	64
107	Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry, 1991, 30, 8830-8839.	1.2	161
108	Effect of salt and membrane fluidity on fluorophore motions of a gramicidin C derivative. Biochemistry, 1991, 30, 7984-7990.	1.2	11

#	Article	IF	CITATIONS
109	Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. Biochemistry, 1990, 29, 512-520.	1.2	45
110	Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Journal of Molecular Biology, 1990, 211, 221-234.	2.0	81
111	Induction of conductance heterogeneity in gramicidin channels. Biochemistry, 1989, 28, 6571-6583.	1.2	94
112	Stimulation of cation transport in mitochondria by gramicidin and truncated derivatives. Biochemistry, 1989, 28, 4361-4367.	1.2	14
113	Mechanism of the uncoupling of oxidative phosphorylation by gramicidin. Biochemistry, 1989, 28, 4355-4360.	1.2	34
114	How do Amino Acid Substitutions Alter the Function of Gramicidin Channels?. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1988, , 133-145.	0.2	3
115	Do Amino Acid Substitutions Alter the Structure of Gramicidin Channels? Chemistry at the Single Molecule Level. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1988, , 115-132.	0.2	3
116	Investigation of the interaction between thallous ions and gramicidin A in dimyristoylphosphatidylcholine vesicles: a thallium-205 NMR equilibrium study. Biochemistry, 1986, 25, 6103-6108.	1.2	30
117	Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry, 1985, 24, 2822-2826.	1.2	57
118	On the recovery of Cys-containing peptides during peptide mapping by HPLC. FEBS Letters, 1985, 183, 313-316.	1.3	2
119	Semisynthesis of linear gramicidins using diphenyl phosphorazidate (DPPA). International Journal of Peptide and Protein Research, 1985, 26, 305-310.	0.1	29
120	Computer building of \hat{I}^2 -helical polypeptide models. Biopolymers, 1984, 23, 23-38.	1.2	59
121	Gramicidin A crystals contain two cation binding sites per channel. Nature, 1979, 279, 723-725.	13.7	126
122	Mannose-6-P and mannose-1-P in rat brain, kidney and liver. Biochemical and Biophysical Research Communications, 1979, 89, 279-285.	1.0	8
123	Helical channels in crystals of gramicidin A and of a cesium-gramicidin A complex: an X-ray diffraction study. Journal of Molecular Biology, 1978, 121, 41-54.	2.0	102
124	The effect of pre-incubation on trypsin kinetics at low pH. Biochimica Et Biophysica Acta - Biomembranes, 1977, 481, 617-621.	1.4	2
125	Mechanism of hydrolysis by serine proteases: direct determination of the pKa's of aspartyl-102 and aspartyl-194 in bovine trypsin using difference infrared spectroscopy. Biochemistry, 1976, 15, 3450-3458.	1.2	73
126	Studies on rat brain acyl-coenzyme A hydrolase (short chain). Biochemical and Biophysical Research Communications, 1976, 71, 959-965.	1.0	20

Roger E Koeppe II

#	Article	IF	CITATIONS
127	Kinetics of the activation of rat liver pyruvate kinase by fructose 1,6-disphosphate and methods for characterizing hysteretic transitions. Biochemical Journal, 1974, 141, 119-125.	1.7	12
128	Kinetic properties of rat liver pyruvate kinase at cellular concentrations of enzyme, substrates and modifiers. Biochemical Journal, 1974, 141, 127-131.	1.7	35
129	Lack of temperature-sensitivity of rat liver pyruvate kinase. Biochemical Journal, 1973, 133, 391-394.	1.7	3
130	Free amino acids of testes. Concentrations of free amino acids in the testes of several species and the precursors of glutamate and glutamine in rat testes <i>in vivo</i> . Biochemical Journal, 1973, 132, 353-359.	3.2	10
131	Variation of neurotoxicity of l- and d-2,4-diaminobutyric acid with route of administration. Toxicology and Applied Pharmacology, 1972, 23, 334-338.	1.3	35
132	The toxicity of monosodium glutamate in young rats. Biochimica Et Biophysica Acta - General Subjects, 1971, 244, 318-321.	1.1	17
133	Effect of fatty acids on gluconeogenesis in the rat. Biochimica Et Biophysica Acta - General Subjects, 1970, 222, 231-234.	1.1	1
134	The effect of fasting and several hyperglycaemic agents on the free amino acids of rat liver. Life Sciences, 1970, 9, 1045-1051.	2.0	6
135	Pathway of Ethanol Metabolism in the Rat. Experimental Biology and Medicine, 1969, 132, 33-34.	1.1	2
136	The â€~neurotoxicity' of <scp>l</scp> -2,4-diaminobutyric acid. Biochemical Journal, 1968, 106, 699-706.	3.2	88
137	Labeling patterns in glutamic acid in Nicotiana rustica from carbon-14 dioxide. Journal of the American Chemical Society, 1967, 89, 3938-3939.	6.6	9
138	PYRUVATE DECARBOXYLATION IN THIAMINE DEFICIENT BRAIN. Journal of Neurochemistry, 1964, 11, 695-699.	2.1	36
139	Crystallization of Non-Racemic Mixtures of the Isomers of Serine. Nature, 1960, 185, 459-460.	13.7	6
140	Formation of serine from glycerol-1,3-C14. Archives of Biochemistry and Biophysics, 1957, 68, 355-361.	1.4	19
141	Single-Molecule Methods for Monitoring Changes in Bilayer Elastic Properties. , 0, , 543-570.		1