
Graham E Fogg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7504564/publications.pdf Version: 2024-02-01

Сранам Е Ессс

#	Article	IF	CITATIONS
1	Potential effects on groundwater quality associated with infiltrating stormwater through dry wells for aquifer recharge. Journal of Contaminant Hydrology, 2022, 246, 103964.	3.3	8
2	Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis. Water (Switzerland), 2022, 14, 949.	2.7	35
3	Anthropogenic basin closure and groundwater salinization (ABCSAL). Journal of Hydrology, 2021, 593, 125787.	5.4	19
4	Mean Flow Direction Modulates Nonâ€Fickian Transport in a Heterogeneous Alluvial Aquiferâ€Aquitard System. Water Resources Research, 2021, 57, e2020WR028655.	4.2	9
5	Using Cellular Automata Approach to Optimize the Hydropower Reservoir Operation of Folsom Dam. Water (Switzerland), 2021, 13, 1851.	2.7	2
6	Timeâ€Fractional Flow Equations (tâ€FFEs) to Upscale Transient Groundwater Flow Characterized by Temporally Nonâ€Darcian Flow Due to Medium Heterogeneity. Water Resources Research, 2021, 57, e2020WR029554.	4.2	6
7	Exploring the Model Space of Airborne Electromagnetic Data to Delineate Largeâ€Scale Structure and Heterogeneity within an Aquifer System. Water Resources Research, 2021, 57, e2021WR029699.	4.2	5
8	Effect of Groundwater Age and Recharge Source on Nitrate Concentrations in Domestic Wells in the San Joaquin Valley. Environmental Science & amp; Technology, 2021, 55, 2265-2275.	10.0	29
9	GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	3.6	38
10	Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resources Research, 2021, 57, .	4.2	62
11	Surface Reservoir Reoperation for Managed Aquifer Recharge: Folsom Reservoir System. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	10
12	Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous, semi-confined aquifer system. Hydrology and Earth System Sciences, 2020, 24, 2437-2456.	4.9	14
13	Domestic well vulnerability to drought duration and unsustainable groundwater management in California's Central Valley. Environmental Research Letters, 2020, 15, 044010.	5.2	56
14	Adaptive Multirate Mass Transfer (aMMT) Model: A New Approach to Upscale Regionalâ€Scale Transport Under Transient Flow Conditions. Water Resources Research, 2020, 56, e2019WR026000.	4.2	20
15	Low-Cost, Open Source Wireless Sensor Network for Real-Time, Scalable Groundwater Monitoring. Water (Switzerland), 2020, 12, 1066.	2.7	18
16	Improving Groundwater Model in Regional Sedimentary Basin Using Hydraulic Gradients. KSCE Journal of Civil Engineering, 2020, 24, 1655-1669.	1.9	4
17	Soil temperature survey in a mountain basin. Geoderma, 2020, 367, 114202.	5.1	4
18	Integration of Soft Data Into Geostatistical Simulation of Categorical Variables. Frontiers in Earth Science, 2020, 8, .	1.8	12

GRAHAM E FOGG

#	Article	lF	CITATIONS
19	Modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined aquifer system. Hydrogeology Journal, 2019, 27, 2869-2888.	2.1	45
20	Distribution and origination of zinc contamination in newly reclaimed heterogeneous dredger fills: Field investigation and numerical simulation. Marine Pollution Bulletin, 2019, 149, 110496.	5.0	4
21	Upscaling of Regional Scale Transport Under Transient Conditions: Evaluation of the Multirate Mass Transfer Model. Water Resources Research, 2019, 55, 5301-5320.	4.2	23
22	Bayesian hydrograph separation in a minimally gauged alpine volcanic watershed in central Chile. Journal of Hydrology, 2019, 575, 1288-1300.	5.4	10
23	Modeling groundwater contaminant transport in the presence of large heterogeneity: a case study comparing MT3D and RWhet. Hydrogeology Journal, 2019, 27, 1363-1371.	2.1	30
24	Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume. Journal of Hazardous Materials, 2019, 365, 796-803.	12.4	36
25	Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California. Ground Water, 2018, 56, 893-908.	1.3	62
26	Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes. International Journal of Environmental Research and Public Health, 2018, 15, 1177.	2.6	14
27	Resolving hydrologic water balances through a novel error analysis approach, with application to the Tahoe basin. Journal of Hydrology, 2017, 546, 326-340.	5.4	10
28	Hydrogeological response to climate change in alpine hillslopes. Hydrological Processes, 2016, 30, 3126-3138.	2.6	36
29	Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective. Water Resources Research, 2016, 52, 9235-9245.	4.2	58
30	Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. Journal of Hydrology, 2016, 539, 539-553.	5.4	57
31	Hydrogeology of a groundwater sustained montane peatland: Grass Lake, California. Wetlands Ecology and Management, 2015, 23, 827-843.	1.5	2
32	Soil suitability index identifies potential areas for groundwater banking on agricultural lands. California Agriculture, 2015, 69, 75-84.	0.8	73
33	Using groundwater age distributions to estimate the effective parameters of Fickian and non-Fickian models of solute transport. Advances in Water Resources, 2013, 54, 11-21.	3.8	23
34	Scalar dissipation rates in non-conservative transport systems. Journal of Contaminant Hydrology, 2013, 149, 46-60.	3.3	20
35	The impact of medium architecture of alluvial settings on non-Fickian transport. Advances in Water Resources, 2013, 54, 78-99.	3.8	54
36	Optimum Plot Size for Field Trials of Taro (Colocasia esculenta). Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 435-443.	1.0	3

GRAHAM E FOGG

#	Article	IF	CITATIONS
37	Nonâ€Fickian dispersion of groundwater age. Water Resources Research, 2012, 48, W07508.	4.2	36
38	Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media. Journal of Contaminant Hydrology, 2011, 126, 235-247.	3.3	47
39	Sobre-escalado eficiente de la conductividad hidráulica en acuÃferos aluviales heterogéneos. Hydrogeology Journal, 2008, 16, 1239-1250.	2.1	47
40	Influence of perched groundwater on base flow. Water Resources Research, 2008, 44, .	4.2	23
41	Role of Volatilization in Changing TBA and MTBE Concentrations at MTBE-Contaminated Sites. Environmental Science & Technology, 2007, 41, 6822-6827.	10.0	8
42	Geologic heterogeneity and a comparison of two geostatistical models: Sequential Gaussian and transition probability-based geostatistical simulation. Advances in Water Resources, 2007, 30, 1914-1932.	3.8	137
43	Modeling shallow water table evaporation in irrigated regions. Irrigation and Drainage Systems, 2007, 21, 119-132.	0.5	17
44	Motivation of synthesis, with an example on groundwater quality sustainability. Water Resources Research, 2006, 42, .	4.2	45
45	River-Aquifer Interactions, Geologic Heterogeneity, and Low-Flow Management. Ground Water, 2006, 44, 837-852.	1.3	229
46	Binary upscaling—the role of connectivity and a new formula. Advances in Water Resources, 2006, 29, 590-604.	3.8	44
47	Describing Near Surface, Transient Flow Processes in Unconfined Aquifers below Irrigated Lands: Model Application in the Western San Joaquin Valley, California. Journal of Irrigation and Drainage Engineering - ASCE, 2004, 130, 451-459.	1.0	7
48	Managing Surface Water-Groundwater to Restore Fall Flows in the Cosumnes River. Journal of Water Resources Planning and Management - ASCE, 2004, 130, 301-310.	2.6	51
49	INFLUENCE OF INCISED-VALLEY-FILL DEPOSITS ON HYDROGEOLOGY OF A STREAM-DOMINATED ALLUVIAL FAN. , 2004, , 15-28.		22
50	Review of the Integrated Groundwater and Surface-Water Model (IGSM). Ground Water, 2003, 41, 238-246.	1.3	33
51	Dispersion of groundwater age in an alluvial aquifer system. Water Resources Research, 2002, 38, 16-1-16-13.	4.2	252
52	Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System. Transport in Porous Media, 2001, 42, 155-179.	2.6	143
53	Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System. , 2001, , 155-179.		15
54	Reply [to "Comment on â€~Diffusion theory for transport in porous media: Transition-probability densities of diffusion processes corresponding to advection-dispersion equations' by Eric M. LaBolle et al.â€]. Water Resources Research, 2000, 36, 823-824.	4.2	4

GRAHAM E FOGG

#	Article	IF	CITATIONS
55	Diffusion processes in composite porous media and their numerical integration by random walks: Generalized stochastic differential equations with discontinuous coefficients. Water Resources Research, 2000, 36, 651-662.	4.2	110
56	Connected-network paradigm for the alluvial aquifer system. , 2000, , .		63
57	Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. Journal of Hydrology, 1999, 226, 48-65.	5.4	191
58	Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resources Research, 1999, 35, 1761-1770.	4.2	193
59	Groundwater vulnerability assessment: Hydrogeologic perspective and example from Salinas Valley, California. Geophysical Monograph Series, 1999, , 45-61.	0.1	40
60	Spatial Variation in Nitrogen Isotope Values Beneath Nitrate Contamination Sources. Ground Water, 1998, 36, 418-426.	1.3	148
61	Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeology Journal, 1998, 6, 131-143.	2.1	128
62	Diffusion theory for transport in porous media: Transition-probability densities of diffusion processes corresponding to advection-dispersion equations. Water Resources Research, 1998, 34, 1685-1693.	4.2	77
63	Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geosciences, 1997, 29, 891-918.	0.9	278
64	Random-Walk Simulation of Transport in Heterogeneous Porous Media: Local Mass-Conservation Problem and Implementation Methods. Water Resources Research, 1996, 32, 583-593.	4.2	269
65	Transition probability-based indicator geostatistics. Mathematical Geosciences, 1996, 28, 453-476.	0.9	395
66	Effect of carbon:nitrogen ratio on kinetics of phenol biodegradation byAcinetobacter johnsonii in saturated sand. Biodegradation, 1995, 6, 283-293.	3.0	31
67	SAMPLING DESIGN FOR SOIL MOISTURE MEASUREMENTS IN LARGE FIELD TRIALS1. Soil Science, 1995, 159, 155-161.	0.9	1
68	Outcrop/Subsurface Comparisons of Heterogeneity in the San Andres Formation. SPE Formation Evaluation, 1990, 5, 233-240.	0.5	29
69	Geological/Stochastic Mapping of Heterogeneity in a Carbonate Reservoir. JPT, Journal of Petroleum Technology, 1990, 42, 1298-1303.	0.2	20
70	Regional underpressuring in Deep Brine Aquifers, Palo Duro Basin, Texas: 1. Effects of hydrostratigraphy and topography. Water Resources Research, 1987, 23, 1481-1493.	4.2	56
71	Regional underpressuring in Deep Brine Aquifers, Palo Duro Basin, Texas: 2. The effect of Cenozoic basin development. Water Resources Research, 1987, 23, 1494-1504.	4.2	26
72	Groundwater Flow and Sand Body Interconnectedness in a Thick, Multipleâ€Aquifer System. Water Resources Research, 1986, 22, 679-694.	4.2	196

50

#	Article	IF	CITATIONS
73	A statistical approach to the inverse problem of aquifer hydrology: 2. Case study. Water Resources Research, 1980, 16, 33-58.	4.2	59

Conditional Simulation of Hydrofacies Architecture. , 0, , 147-170.