
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502817/publications.pdf Version: 2024-02-01

SHINCO KAUMURA

#	Article	IF	CITATIONS
1	Activation of UCP1-Independent Ca2+ Cycling Thermogenesis by Wireless Optogenetics. Methods in Molecular Biology, 2022, 2448, 131-139.	0.9	0
2	Is thermogenesis really needed for brown adipose tissue–mediated metabolic benefit?. Journal of Clinical Investigation, 2022, 132, .	8.2	6
3	β3-Adrenergic receptor agonist treats rotator cuff fatty infiltration by activating beige fat in mice. Journal of Shoulder and Elbow Surgery, 2021, 30, 373-386.	2.6	14
4	Kruppelâ€like factorÂ15 regulates fuel switching between glucose and fatty acids in brown adipocytes. Journal of Diabetes Investigation, 2021, 12, 1144-1151.	2.4	8
5	The major cap-binding protein elF4E regulates lipid homeostasis and diet-induced obesity. Nature Metabolism, 2021, 3, 244-257.	11.9	29
6	The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology, 2021, 22, 393-409.	37.0	203
7	Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nature Communications, 2021, 12, 1680.	12.8	45
8	The epigenetic regulation of adipose tissue plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
9	Bioenergetics matter to metabolic health—from a fat progenitor view. Cell Stem Cell, 2021, 28, 589-591.	11.1	1
10	Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. ELife, 2021, 10, .	6.0	15
11	Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination. Journal of Experimental Medicine, 2021, 218, .	8.5	8
12	Oil does more than light the lamp: The multifaceted role of lipids in thermogenic fat. Developmental Cell, 2021, 56, 1408-1416.	7.0	10
13	Detouring adrenergic stimulation to induce adipose thermogenesis. Nature Reviews Endocrinology, 2021, 17, 579-580.	9.6	3
14	The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nature Communications, 2021, 12, 5163.	12.8	47
15	Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. IScience, 2021, 24, 103342.	4.1	58
16	The regulation of glucose and lipid homeostasis via <scp>PLTP</scp> as a mediator of <scp>BAT</scp> –liver communication. EMBO Reports, 2020, 21, e49828.	4.5	28
17	Adrenergic-Independent Signaling via CHRNA2 Regulates Beige Fat Activation. Developmental Cell, 2020, 54, 106-116.e5.	7.0	22
18	Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis. Nature Communications, 2020, 11, 1730.	12.8	39

#	Article	IF	CITATIONS
19	A new way to ignite thermogenesis in human adipose tissue. Nature Reviews Endocrinology, 2020, 16, 475-476.	9.6	6
20	CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 2020, 182, 563-577.e20.	28.9	156
21	Intramuscular Brown Fat Activation Decreases Muscle Atrophy and Fatty Infiltration and Improves Gait After Delayed Rotator Cuff Repair in Mice. American Journal of Sports Medicine, 2020, 48, 1590-1600.	4.2	19
22	Confounding issues in the â€~humanized' BAT of mice. Nature Metabolism, 2020, 2, 303-304.	11.9	12
23	BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572, 614-619.	27.8	332
24	Naa10P puts a brake on PGC1α and fat browning. Nature Structural and Molecular Biology, 2019, 26, 849-851.	8.2	2
25	Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nature Metabolism, 2019, 1, 886-898.	11.9	50
26	Metabolic adaptation and maladaptation in adipose tissue. Nature Metabolism, 2019, 1, 189-200.	11.9	224
27	An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell Metabolism, 2019, 30, 190-200.e6.	16.2	45
28	Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature, 2019, 565, 180-185.	27.8	178
29	Cellular heterogeneity in brown adipose tissue. Journal of Clinical Investigation, 2019, 130, 65-67.	8.2	11
30	Actomyosin-Mediated Tension Orchestrates Uncoupled Respiration in Adipose Tissues. Cell Metabolism, 2018, 27, 602-615.e4.	16.2	70
31	Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nature Communications, 2018, 9, 1566.	12.8	68
32	Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Science Signaling, 2018, 11, .	3.6	116
33	The Common and Distinct Features of Brown and Beige Adipocytes. Trends in Endocrinology and Metabolism, 2018, 29, 191-200.	7.1	377
34	Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. Cell Metabolism, 2018, 27, 180-194.e6.	16.2	133
35	Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560, 102-106.	27.8	380
36	<scp>AAV</scp> â€mediated gene therapy as a strategy to fight obesity and metabolic diseases. EMBO Molecular Medicine, 2018, 10, .	6.9	8

#	Article	IF	CITATIONS
37	Multifaceted Roles of Beige Fat in Energy Homeostasis Beyond UCP1. Endocrinology, 2018, 159, 2545-2553.	2.8	22
38	Abstract 2398: Tumor cell-adipocyte gap junctions activate lipolysis in breast cancer. , 2018, , .		0
39	Mitochondrial homeostasis in adipose tissue remodeling. Science Signaling, 2017, 10, .	3.6	74
40	Mammary alveolar epithelial cells convert to brown adipocytes in postâ€lactating mice. Journal of Cellular Physiology, 2017, 232, 2923-2928.	4.1	26
41	Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression. Adipocyte, 2017, 6, 124-133.	2.8	34
42	Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver. Molecular and Cellular Biology, 2017, 37, .	2.3	37
43	Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metabolism, 2017, 25, 811-822.e4.	16.2	174
44	Advances in the understanding of adipose tissue biology. Nature Reviews Endocrinology, 2017, 13, 69-70.	9.6	58
45	Burning Fat and Building Bone by FSH Blockade. Cell Metabolism, 2017, 26, 285-287.	16.2	17
46	UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Medicine, 2017, 23, 1454-1465.	30.7	429
47	Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-β expression. PLoS Genetics, 2017, 13, e1006950.	3.5	50
48	PDGFA Makes Thin Skin Thicker: Molecular Regulation of Adipose Progenitor Maintenance. Cell Stem Cell, 2016, 19, 675-676.	11.1	1
49	Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans. Cell Metabolism, 2016, 23, 1200-1206.	16.2	264
50	A Synergistic Antiobesity Effect by a Combination of Capsinoids and Cold Temperature Through Promoting Beige Adipocyte Biogenesis. Diabetes, 2016, 65, 1410-1423.	0.6	90
51	Beige Adipocyte Maintenance Is Regulated by Autophagy-Induced Mitochondrial Clearance. Cell Metabolism, 2016, 24, 402-419.	16.2	282
52	Mitochondrial Activity in Human White Adipocytes Is Regulated by the Ubiquitin Carrier Protein 9/microRNA-30a Axis. Journal of Biological Chemistry, 2016, 291, 24747-24755.	3.4	30
53	Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature Reviews Molecular Cell Biology, 2016, 17, 480-495.	37.0	243
54	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	CITATIONS
55	A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metabolism, 2016, 23, 454-466.	16.2	122
56	Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nature Medicine, 2016, 22, 427-432.	30.7	381
57	Abstract 2673: Inhibition of fatty-acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. , 2016, , .		0
58	Comparative analysis of microRNA expression in mouse and human brown adipose tissue. BMC Genomics, 2015, 16, 820.	2.8	29
59	Engineering Fat Cell Fate to Fight Obesity and Metabolic Diseases. Keio Journal of Medicine, 2015, 64, 65-65.	1.1	15
60	Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nature Communications, 2015, 6, 6794.	12.8	187
61	Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. Journal of Clinical Investigation, 2015, 125, 478-486.	8.2	547
62	Genetic and functional characterization of clonally derived adult human brown adipocytes. Nature Medicine, 2015, 21, 389-394.	30.7	366
63	A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. Cell, 2015, 163, 643-655.	28.9	575
64	JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nature Communications, 2015, 6, 7052.	12.8	87
65	Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism, 2015, 22, 546-559.	16.2	763
66	Phosphoproteomics Identifies CK2 as a Negative Regulator of Beige Adipocyte Thermogenesis and Energy Expenditure. Cell Metabolism, 2015, 22, 997-1008.	16.2	74
67	A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E315-E323.	3.5	52
68	ThermoMouse: An In Vivo Model to Identify Modulators of UCP1 Expression in Brown Adipose Tissue. Cell Reports, 2014, 9, 1584-1593.	6.4	94
69	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	28.9	719
70	A New Era in Brown Adipose Tissue Biology: Molecular Control of Brown Fat Development and Energy Homeostasis. Annual Review of Physiology, 2014, 76, 225-249.	13.1	348
71	Lightening up a notch: Notch regulation of energy metabolism. Nature Medicine, 2014, 20, 811-812.	30.7	16
72	EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature, 2013. 504. 163-167.	27.8	272

5

#	Article	IF	CITATIONS
73	Isolation and Differentiation of Stromal Vascular Cells to Beige/Brite Cells. Journal of Visualized Experiments, 2013, , .	0.3	86
74	Relevance of brown adipose tissue in infancy and adolescence. Pediatric Research, 2013, 73, 3-9.	2.3	74
75	Regulation of Early Adipose Commitment by Zfp521. PLoS Biology, 2012, 10, e1001433.	5.6	114
76	Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells. PLoS ONE, 2012, 7, e49452.	2.5	541
77	Boström et al. reply. Nature, 2012, 488, E10-E11.	27.8	14
78	PPARÎ ³ agonists Induce a White-to-Brown Fat Conversion through Stabilization of PRDM16 Protein. Cell Metabolism, 2012, 15, 395-404.	16.2	658
79	A Novel Therapeutic Approach to Treating Obesity through Modulation of TGFÎ ² Signaling. Endocrinology, 2012, 153, 3133-3146.	2.8	94
80	Title is missing!. Kagaku To Seibutsu, 2012, 50, 11-13.	0.0	0
81	A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481, 463-468.	27.8	3,646
82	Role of IGF signaling in catch-up growth and accelerated temporal development in zebrafish embryos in response to oxygen availability. Development (Cambridge), 2011, 138, 777-786.	2.5	73
83	Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation, 2011, 121, 96-105.	8.2	1,036
84	Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARÎ ³ by Cdk5. Nature, 2010, 466, 451-456.	27.8	793
85	Transcriptional Control of Brown Fat Development. Cell Metabolism, 2010, 11, 257-262.	16.2	362
86	Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes and Development, 2009, 23, 788-797.	5.9	250
87	Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 2009, 460, 1154-1158.	27.8	620
88	PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008, 454, 961-967.	27.8	1,997
89	Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes and Development, 2008, 22, 1397-1409.	5.9	393
90	Modulation of PGC-1 Coactivator Pathways in Brown Fat Differentiation through LRP130. Journal of Biological Chemistry, 2008, 283, 31960-31967.	3.4	49

SHINGO KAJIMURA

#	Article	IF	CITATIONS
91	Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism, 2007, 6, 38-54.	16.2	996
92	Insulinâ€like growth factorâ€binding proteinâ€1: an evolutionarily conserved fine tuner of insulinâ€like growth factor action under catabolic and stressful conditions. Journal of Fish Biology, 2007, 71, 309-325.	1.6	33
93	Prolactin receptor and proliferating/apoptotic cells in esophagus of the Mozambique tilapia (Oreochromis mossambicus) in fresh water and in seawater. General and Comparative Endocrinology, 2007, 152, 326-331.	1.8	22
94	Understanding Hypoxia-Induced Gene Expression in Early Development: In Vitro and In Vivo Analysis of Hypoxia-Inducible Factor 1-Regulated Zebra Fish Insulin-Like Growth Factor Binding Protein 1 Gene Expression. Molecular and Cellular Biology, 2006, 26, 1142-1155.	2.3	138
95	Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. General and Comparative Endocrinology, 2005, 143, 240-250.	1.8	13
96	Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1240-1245.	7.1	226
97	Identification of the growth hormone receptor in an advanced teleost, the tilapia (Oreochromis) Tj ETQq1 1 0.78 Endocrinology, 2004, 181, 65-76.	4314 rgBT 2.6	/Overlock 10 83
98	Changes in plasma concentrations of immunoreactive ouabain in the tilapia in response to changing salinity: is ouabain a hormone in fish?. General and Comparative Endocrinology, 2004, 135, 90-99.	1.8	30
99	In vitro effects of cortisol on the release and gene expression of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. General and Comparative Endocrinology, 2004, 135, 116-125.	1.8	32
100	Conadal development and expression profiles of gonadotropin genes in wild sea conger, Ariosoma meeki. Fish Physiology and Biochemistry, 2003, 28, 95-96.	2.3	5
101	Identification of growth hormone receptor in the ovary of tilapia, Oreochromis mossambicus. Fish Physiology and Biochemistry, 2003, 28, 211-212.	2.3	2
102	Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 134, 429-439.	1.8	139
103	Dual mode of cortisol action on GH/IGF-I/IGF binding proteins in the tilapia, Oreochromis mossambicus. Journal of Endocrinology, 2003, 178, 91-99.	2.6	94
104	Immunomodulatory effects of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. Journal of Endocrinology, 2002, 173, 483-492.	2.6	60
105	Effects of environmental osmolality on release of prolactin, growth hormone and ACTH from the tilapia pituitary. General and Comparative Endocrinology, 2002, 128, 91-101.	1.8	81
106	Effects of insulin-like growth factors (IGF-I and -II) on growth hormone and prolactin release and gene expression in euryhaline tilapia, Oreochromis mossambicus. General and Comparative Endocrinology, 2002, 127, 223-231.	1.8	39
107	Expression profiles of two gonadotropin β subunit (GTH-I β and GTH-II β) gene during gametogenesis in the Japanese flounder, <i>Paralichthys olivaceus</i> . Fisheries Science, 2002, 68, 1265-1266.	1.6	0
108	Changes in the levels of mRNA coding for gonadotropin Ibeta and Ilbeta subunits during vitellogenesis in the common Japanese conger Conger myriaster. Fisheries Science, 2001, 67, 1053-1062.	1.6	19

#	ARTICLE	IF	CITATIONS
109	cDNA Cloning of Two Gonadotropin β Subunits (GTH-lβ and -llβ) and Their Expression Profiles during Gametogenesis in the Japanese Flounder (Paralichthys olivaceus). General and Comparative Endocrinology, 2001, 122, 117-129.	1.8	78
110	Title is missing!. Fish Physiology and Biochemistry, 2001, 25, 221-230.	2.3	58