
Yiwei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502703/publications.pdf Version: 2024-02-01

VINEL LIANC

#	Article	IF	CITATIONS
1	Effects of Gamma-Aminobutyric Acid on Seed Germination, Ion Balance, and Metabolic Activity in Perennial Ryegrass Under Salinity Stress. Journal of Plant Growth Regulation, 2022, 41, 1835-1844.	5.1	6
2	Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application. BMC Plant Biology, 2022, 22, 68.	3.6	10
3	Physiological and Molecular Responses of Zoysia japonica to Rust Infection. International Journal of Molecular Sciences, 2022, 23, 4185.	4.1	3
4	Diverse genotypic variations of photosynthetic capacity, transpiration and antioxidant enzymes of lily hybrids to increasing salinity stress. Scientia Horticulturae, 2021, 280, 109939.	3.6	9
5	Plant growth, ion accumulation, and antioxidant enzymes of endophyte-infected and endophyte-free tall fescue to salinity stress. Acta Physiologiae Plantarum, 2021, 43, 1.	2.1	7
6	Differential Metabolomic Responses of Kentucky Bluegrass Cultivars to Low Nitrogen Stress. Frontiers in Plant Science, 2021, 12, 808772.	3.6	5
7	Growth and Hormone Alterations in Response to Heat Stress in Perennial Ryegrass Accessions Differing in Heat Tolerance. Journal of Plant Growth Regulation, 2020, 39, 1022-1029.	5.1	14
8	Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biology, 2020, 20, 520.	3.6	17
9	Submergence stress alters fructan and hormone metabolism and gene expression in perennial ryegrass with contrasting growth habits. Environmental and Experimental Botany, 2020, 179, 104202.	4.2	8
10	Natural variation and genomic prediction of growth, physiological traits, and nitrogen-use efficiency in perennial ryegrass under low-nitrogen stress. Journal of Experimental Botany, 2020, 71, 6670-6683.	4.8	9
11	Minimal irrigation requirements of Kentucky bluegrass and tall fescue blends in the northern transition zone. Crop Science, 2020, 61, 2939.	1.8	4
12	Genome-Wide Association Study for Plant Architecture and Bioenergy Traits in Diverse Sorghum and Sudangrass Germplasm. Agronomy, 2020, 10, 1602.	3.0	10
13	Chlorophyll Metabolism and Gene Expression in Response to Submergence Stress and Subsequent Recovery in Perennial Ryegrass Accessions Differing in Growth Habits. Journal of Plant Physiology, 2020, 251, 153195.	3.5	19
14	Transcriptome profiling reveals differentially expressed genes associated with flowering time in contrasting switchgrass genotypes. Crop Science, 2020, 60, 1472-1487.	1.8	2
15	The signal peptide of Cry1Ia can improve the expression of eGFP or mCherry in Escherichia coli and Bacillus thuringiensis and enhance the host's fluorescent intensity. Microbial Cell Factories, 2020, 19, 112.	4.0	5
16	ldentification of Quantitative Trait Loci for Plant Height, Crown Diameter, and Plant Biomass in a Pseudo-F2 Population of Switchgrass. Bioenergy Research, 2019, 12, 267-274.	3.9	5
17	Editorial: Genetics and Genomics of Polyploid Plants. Frontiers in Plant Science, 2019, 10, 934.	3.6	2
18	Nitrogen and carbon contents, nitrogen use efficiency, and antioxidant responses of perennial ryegrass accessions to nitrogen deficiency. Journal of Plant Nutrition, 2019, 42, 2092-2101.	1.9	5

YIWEI JIANG

#	Article	IF	CITATIONS
19	Association of candidate genes with drought tolerance traits in zoysiagrass germplasm. Journal of Plant Physiology, 2019, 237, 61-71.	3.5	6
20	Effects of 6-Benzyladenine, Î ³ -Aminobutyric Acid, and Nitric Oxide on Plant Growth, Photochemical Efficiency, and Ion Accumulation of Perennial Ryegrass Cultivars to Salinity Stress. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1418-1422.	1.0	13
21	Genome-wide identification of <i>ZmHMAs</i> and association of natural variation in <i>ZmHMA2</i> and <i>ZmHMA3</i> with leaf cadmium accumulation in maize. PeerJ, 2019, 7, e7877.	2.0	20
22	Differential antioxidant enzyme activity inÂrapidâ€response glyphosateâ€resistant <i>Ambrosia trifida</i> . Pest Management Science, 2018, 74, 2125-2132.	3.4	14
23	Genome-Wide Association Study in Pseudo-F2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates. Frontiers in Plant Science, 2018, 9, 1250.	3.6	22
24	Quantitative Trait Locus Mapping for Flowering Time in a Lowland × Upland Switchgrass Pseudoâ€F 2 Population. Plant Genome, 2018, 11, 170093.	2.8	35
25	Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics, 2018, 19, 91.	2.8	60
26	Growth, ionic response, and gene expression of shoots and roots of perennial ryegrass under salinity stress. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	8
27	Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Reports, 2018, 37, 1611-1624.	5.6	44
28	Interactive Short-term Effects of Waterlogging and Salinity Stress on Growth and Carbohydrate, Lipid Peroxidation, and Nutrients in Two Perennial Ryegrass Cultivars. Journal of the American Society for Horticultural Science, 2017, 142, 110-118.	1.0	9
29	Genomeâ€wide associations with flowering time in switchgrass using exomeâ€capture sequencing data. New Phytologist, 2017, 213, 154-169.	7.3	56
30	Genotypic Variations in Plant Growth and Nutritional Elements of Perennial Ryegrass Accessions under Salinity Stress. Journal of the American Society for Horticultural Science, 2017, 142, 476-483.	1.0	10
31	Association of Candidate Genes With Submergence Response in Perennial Ryegrass. Frontiers in Plant Science, 2017, 8, 791.	3.6	8
32	Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon. Frontiers in Plant Science, 2017, 8, 811.	3.6	27
33	Turfgrass Selection and Grass Clippings Management Influence Soil Carbon and Nitrogen Dynamics. Agronomy Journal, 2017, 109, 1719-1725.	1.8	19
34	Marker-Trait Association for Biomass Yield of Potential Bio-fuel Feedstock Miscanthus sinensis from Southwest China. Frontiers in Plant Science, 2016, 7, 802.	3.6	18
35	Leaf and Root Growth, Carbon and Nitrogen Contents, and Gene Expression of Perennial Ryegrass to Different Nitrogen Supplies. Journal of the American Society for Horticultural Science, 2016, 141, 555-562.	1.0	10
36	Exogenous Application of Nitrogen and Cytokinin on Growth, Carbohydrate, and Antioxidant Metabolism of Creeping Bentgrass after De-submergence. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 1602-1606.	1.0	4

YIWEI JIANG

#	Article	IF	CITATIONS
37	Specific peroxidases differentiateBrachypodium distachyonaccessions and are associated with drought tolerance traits. Annals of Botany, 2016, 118, 259-270.	2.9	8
38	Genotypic variation in growth and metabolic responses of perennial ryegrass exposed to short-term waterlogging and submergence stress. Plant Physiology and Biochemistry, 2015, 95, 57-64.	5.8	39
39	Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. Plant Science, 2015, 235, 37-45.	3.6	37
40	Phenotypic and Genotypic Diversity for Drought Tolerance among and within Perennial Ryegrass Accessions. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 1148-1154.	1.0	11
41	Growth and Enzymatic Activity of Four Warm-season Turfgrass Species Exposed to Waterlogging. Journal of the American Society for Horticultural Science, 2015, 140, 151-162.	1.0	10
42	The BRANCHING ENZYME1 gene, encoding a glycoside hydrolase family 13 protein, is required for in vitro plant regeneration in Arabidopsis. Plant Cell, Tissue and Organ Culture, 2014, 117, 279-291.	2.3	8
43	Research Advances in Mechanisms of Turfgrass Tolerance to Abiotic Stresses: From Physiology to Molecular Biology. Critical Reviews in Plant Sciences, 2014, 33, 141-189.	5.7	162
44	Natural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessions. Plant, Cell and Environment, 2013, 36, 2021-2033.	5.7	24
45	Growth response, carbohydrate and ion accumulation of diverse perennial ryegrass accessions to increasing salinity. Scientia Horticulturae, 2013, 154, 73-81.	3.6	32
46	Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. Journal of Experimental Botany, 2013, 64, 1537-1551.	4.8	83
47	Physiological Response, Cell Wall Components, and Gene Expression of Switchgrass under Shortâ€Term Drought Stress and Recovery. Crop Science, 2012, 52, 2718-2727.	1.8	28
48	Nucleotide diversity and linkage disequilibrium in antioxidant genes of Brachypodium distachyon. Plant Science, 2012, 197, 122-129.	3.6	8
49	Differential growth response and carbohydrate metabolism of global collection of perennial ryegrass accessions to submergence and recovery following de-submergence. Journal of Plant Physiology, 2012, 169, 1040-1049.	3.5	30
50	Association of simple sequence repeat (SSR) markers with submergence tolerance in diverse populations of perennial ryegrass. Plant Science, 2011, 180, 391-398.	3.6	36
51	Natural variation of drought response in <i>Brachypodium distachyon</i> . Physiologia Plantarum, 2011, 141, 19-29.	5.2	67
52	Identification of differentially expressed genes under drought stress in perennial ryegrass. Physiologia Plantarum, 2010, 139, no-no.	5.2	40
53	Antioxidative Responses and Candidate Gene Expression in Prairie Junegrass under Drought Stress. Journal of the American Society for Horticultural Science, 2010, 135, 303-309.	1.0	20
54	Anaerobic metabolism in roots of Kentucky bluegrass in response to short-term waterlogging alone and in combination with high temperatures. Plant and Soil, 2009, 314, 221-229.	3.7	20

YIWEI JIANG

#	Article	IF	CITATIONS
55	Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 2009, 120, 264-270.	3.6	247
56	Correlations of Leaf Relative Water Content, Canopy Temperature, and Spectral Reflectance in Perennial Ryegrass Under Water Deficit Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 459-462.	1.0	35
57	Ploidy Level and DNA Content of Perennial Ryegrass Germplasm as Determined by Flow Cytometry. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 2049-2052.	1.0	24
58	Antioxidant Responses of Creeping Bentgrass Roots to Waterlogging. Crop Science, 2007, 47, 232-238.	1.8	51
59	Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Science, 2007, 47, 1611-1618.	1.8	44
60	Responses of Turfgrass to Low-Oxygen Stress. Books in Soils, Plants, and the Environment, 2007, , 531-545.	0.1	2
61	Waterlogging Tolerance of Kentucky Bluegrass Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 386-390.	1.0	36
62	Growth, Physiological, and Anatomical Responses of Creeping Bentgrass Cultivars to Different Depths of Waterlogging. Crop Science, 2006, 46, 2420-2426.	1.8	37
63	Protein Alterations in Tall Fescue in Response to Drought Stress and Abscisic Acid. Crop Science, 2002, 42, 202-207.	1.8	109
64	Osmotic Adjustment and Root Growth Associated with Drought Preconditioningâ€Enhanced Heat Tolerance in Kentucky Bluegrass. Crop Science, 2001, 41, 1168-1173.	1.8	79
65	Drought and Heat Stress Injury to Two Coolâ€5eason Turfgrasses in Relation to Antioxidant Metabolism and Lipid Peroxidation. Crop Science, 2001, 41, 436-442.	1.8	379
66	Effects of Drought or Heat Stress Alone and in Combination on Kentucky Bluegrass. Crop Science, 2000, 40, 1358-1362.	1.8	94
67	Turfgrass Water Use and Physiology. , 0, , 319-345.		0