Hwan-Ching Tai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7500990/publications.pdf

Version: 2024-02-01

38 papers

2,367 citations

471509 17 h-index 34 g-index

40 all docs

40 docs citations

40 times ranked

4356 citing authors

#	Article	IF	CITATIONS
1	Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nature Reviews Neuroscience, 2008, 9, 826-838.	10.2	419
2	The Synaptic Accumulation of Hyperphosphorylated Tau Oligomers in Alzheimer Disease Is Associated With Dysfunction of the Ubiquitin-Proteasome System. American Journal of Pathology, 2012, 181, 1426-1435.	3.8	369
3	Dissecting phenotypic traits linked to human resilience to Alzheimer's pathology. Brain, 2013, 136, 2510-2526.	7.6	294
4	Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-β. Brain, 2012, 135, 2155-2168.	7.6	268
5	Parallel Identification of O-GlcNAc-Modified Proteins from Cell Lysates. Journal of the American Chemical Society, 2004, 126, 10500-10501.	13.7	111
6	Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst, The, 2014, 139, 688-704.	3 . 5	111
7	Characterization of the brain 26S proteasome and its interacting proteins. Frontiers in Molecular Neuroscience, 2010, 3, .	2.9	99
8	Synaptic alterations in the rTg4510 mouse model of tauopathy. Journal of Comparative Neurology, 2013, 521, 1334-1353.	1.6	98
9	Axonal Translation of \hat{I}^2 -Catenin Regulates Synaptic Vesicle Dynamics. Journal of Neuroscience, 2013, 33, 5584-5589.	3.6	86
10	Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer's disease. Acta Neuropathologica Communications, 2014, 2, 146.	5 . 2	79
11	On the Rigidity of Polynorbornenes with Dipolar Pendant Groups. Chemistry - A European Journal, 2006, 12, 324-330.	3.3	60
12	Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer¿s disease. Acta Neuropathologica Communications, 2014, 2, 146.	5. 2	60
13	The Study of Postmortem Human Synaptosomes for Understanding Alzheimer's Disease and Other Neurological Disorders: A Review. Neurology and Therapy, 2017, 6, 57-68.	3.2	54
14	\hat{l}^2 -Amyloid Induces Pathology-Related Patterns of Tau Hyperphosphorylation at Synaptic Terminals. Journal of Neuropathology and Experimental Neurology, 2018, 77, 814-826.	1.7	46
15	Chemical distinctions between Stradivari's maple and modern tonewood. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 27-32.	7.1	36
16	Acoustic evolution of old Italian violins from Amati to Stradivari. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5926-5931.	7.1	30
17	MicroRNA: MicroRNAs Reach out into Dendrites. Current Biology, 2006, 16, R121-R123.	3.9	23
18	Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2020, 1610, 460536.	3.7	16

#	Article	IF	Citations
19	Chemical Inhibition of Human Thymidylate Kinase and Structural Insights into the Phosphate Binding Loop and Ligand-Induced Degradation. Journal of Medicinal Chemistry, 2016, 59, 9906-9918.	6.4	15
20	Faster magic angle spinning reveals cellulose conformations in woods. Chemical Communications, 2021, 57, 4110-4113.	4.1	15
21	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, 19144-19154.	13.8	11
22	Therapeutic potential and underlying mechanism of sarcosine (N-methylglycine) in N-methyl-D-aspartate (NMDA) receptor hypofunction models of schizophrenia. Journal of Psychopharmacology, 2019, 33, 1288-1302.	4.0	10
23	Two-photon fluorescence and second harmonic generation hyperspectral imaging of old and modern spruce woods. Optics Express, 2020, 28, 38831.	3.4	8
24	Aggregation of Betaâ€Amyloid Peptides Proximal to Zwitterionic Lipid Bilayers. Chemistry - an Asian Journal, 2015, 10, 1967-1971.	3.3	7
25	Angelman Syndrome: Finding the Lost Arc. Cell, 2010, 140, 608-610.	28.9	6
26	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, 19293-19303.	2.0	6
27	Identification and characterization of wood from antique Chinese guqin zithers. Journal of Cultural Heritage, 2022, 53, 72-79.	3.3	6
28	Role of timbre memory in evaluating Stradivari violins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2778.	7.1	5
29	A facile ionic-liquid pretreatment method for the examination of archaeological wood by scanning electron microscopy. Scientific Reports, 2019, 9, 13253.	3.3	5
30	Identification of 2-oxohistidine Interacting Proteins Using E. coli Proteome Chips. Molecular and Cellular Proteomics, 2016, 15, 3581-3593.	3.8	3
31	Synthesis of peptides containing 2-oxohistidine residues and their characterization by liquid chromatography-tandem mass spectrometry. Journal of Peptide Science, 2015, 21, 114-119.	1.4	2
32	Fibrillization of βâ€Amyloid Peptides via Chemically Modulated Pathway. Chemistry - A European Journal, 2018, 24, 4939-4943.	3.3	2
33	Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization. Scientific Reports, 2021, 11, 18583.	3.3	2
34	String Theories: Chemical Secrets of Italian Violins and Chinese Guqins. , 2020, , .		1
35	Dimethylcysteine (DiCys)/o-Phthalaldehyde Derivatization for Chiral Metabolite Analyses: Cross-Comparison of Six Chiral Thiols. Molecules, 2021, 26, 7416.	3.8	1
36	Frontispiece: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0

#	Article	IF	CITATIONS
37	Frontispiz: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, .	2.0	O
38	A nanovesicle platform to deliver neoantigens and immune checkpoint inhibitors: To ASPIRE for novel cancer vaccines. , 2022, 1 , .		0