Kenneth D Carr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/750006/publications.pdf Version: 2024-02-01

KENNETH D CADD

#	Article	IF	CITATIONS
1	Augmentation of drug reward by chronic food restriction. Physiology and Behavior, 2002, 76, 353-364.	2.1	273
2	Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nature Communications, 2015, 6, 8543.	12.8	210
3	Food Restriction Enhances the Central Rewarding Effect of Abused Drugs. Journal of Neuroscience, 1998, 18, 7502-7510.	3.6	173
4	Chronic food restriction: Enhancing effects on drug reward and striatal cell signaling. Physiology and Behavior, 2007, 91, 459-472.	2.1	148
5	Feeding, drug abuse, and the sensitization of reward by metabolic need. Neurochemical Research, 1996, 21, 1455-1467.	3.3	113
6	Chronic food restriction and weight loss produce opioid facilitation of perifornical hypothalamic self-stimulation. Brain Research, 1993, 607, 141-148.	2.2	75
7	Rewarding and locomotor-activating effects of direct dopamine receptor agonists are augmented by chronic food restriction in rats. Psychopharmacology, 2001, 154, 420-428.	3.1	65
8	Chronic food restriction and dopamine transporter function in rat striatum. Brain Research, 2006, 1082, 98-101.	2.2	52
9	Effects of diet and insulin on dopamine transporter activity and expression in rat caudateâ€putamen, nucleus accumbens, and midbrain. Journal of Neurochemistry, 2017, 140, 728-740.	3.9	51
10	Chronic food restriction increases Fos-like immunoreactivity (FLI) induced in rat forebrain by intraventricular amphetamine. Brain Research, 2000, 861, 88-96.	2.2	46
11	Chronic food restriction in rats augments the central rewarding effect of cocaine and the δ 1 opioid agonist, DPDPE, but not the δ 2 agonist, deltorphin-II. Psychopharmacology, 2000, 152, 200-207.	3.1	46
12	Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: Binge eating and drug abuse. Physiology and Behavior, 2011, 104, 162-167.	2.1	46
13	Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats. Pharmacology Biochemistry and Behavior, 2012, 100, 538-544.	2.9	39
14	Reward-potentiating effects of D-1 dopamine receptor agonist and AMPAR GluR1 antagonist in nucleus accumbens shell and their modulation by food restriction. Psychopharmacology, 2009, 202, 731-743.	3.1	35
15	Synthesis, protein levels, activity, and phosphorylation state of tyrosine hydroxylase in mesoaccumbens and nigrostriatal dopamine pathways of chronically food-restricted rats. Brain Research, 2006, 1122, 135-142.	2.2	33
16	Comparison of basal and D-1 dopamine receptor agonist-stimulated neuropeptide gene expression in caudate-putamen and nucleus accumbens of ad libitum fed and food-restricted rats. Molecular Brain Research, 2005, 141, 121-127.	2.3	32
17	Sucrose Ingestion Induces Rapid AMPA Receptor Trafficking. Journal of Neuroscience, 2013, 33, 6123-6132.	3.6	31
18	A progressive ratio schedule of self-stimulation testing in rats reveals profound augmentation of d-amphetamine reward by food restriction but no effect of a ?sensitizing? regimen of d-amphetamine. Psychopharmacology, 2004, 175, 106-13.	3.1	27

KENNETH D CARR

#	Article	IF	CITATIONS
19	Effects of food restriction and sucrose intake on synaptic delivery of AMPA receptors in nucleus accumbens. Synapse, 2011, 65, 1024-1031.	1.2	24
20	Interactions between insulin and diet on striatal dopamine uptake kinetics in rodent brain slices. European Journal of Neuroscience, 2019, 49, 794-804.	2.6	24
21	Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluA1 in food-restricted rats. Brain Research, 2011, 1400, 31-41.	2.2	23
22	Synthesis and evaluation of fluorinated derivatives of fentanyl as candidates for opiate receptor studies using positron emission tomograpry. Journal of Labelled Compounds and Radiopharmaceuticals, 1986, 23, 277-293.	1.0	22
23	Effects of central leptin infusion on the reward-potentiating effect of d-amphetamine. Brain Research, 2006, 1087, 123-133.	2.2	22
24	The Physiology of Opiate Hedonic Effects and the Role of Opioids in Motivated Behavior. Advances in Alcohol & Substance Abuse, 1984, 3, 5-18.	0.5	21
25	Food restriction induces synaptic incorporation of calciumâ€permeable AMPA receptors in nucleus accumbens. European Journal of Neuroscience, 2017, 45, 826-836.	2.6	21
26	Effects of time of feeding on psychostimulant reward, conditioned place preference, metabolic hormone levels, and nucleus accumbens biochemical measures in food-restricted rats. Psychopharmacology, 2013, 227, 307-320.	3.1	19
27	Nucleus accumbens AMPA receptor trafficking upregulated by food restriction: an unintended target for drugs of abuse and forbidden foods. Current Opinion in Behavioral Sciences, 2016, 9, 32-39.	3.9	19
28	The adenosine A2A receptor agonist, CGS-21680, blocks excessive rearing, acquisition of wheel running, and increases nucleus accumbens CREB phosphorylation in chronically food-restricted rats. Brain Research, 2007, 1142, 100-109.	2.2	14
29	Homeostatic regulation of reward via synaptic insertion of calcium-permeable AMPA receptors in nucleus accumbens. Physiology and Behavior, 2020, 219, 112850.	2.1	14
30	Modulatory Effects of Food Restriction on Brain and Behavioral Effects of Abused Drugs. Current Pharmaceutical Design, 2020, 26, 2363-2371.	1.9	14
31	Repeated Inescapable Stress Produces a Neuroleptic-like Effect on the Conditioned Avoidance Response. Neuropsychopharmacology, 1995, 13, 129-138.	5.4	13
32	Effects of the MEK inhibitor, SL-327, on rewarding, motor- and cellular-activating effects of d-amphetamine and SKF-82958, and their augmentation by food restriction in rat. Psychopharmacology, 2009, 201, 495-506.	3.1	13
33	Nucleus accumbens AMPA receptor involvement in cocaine-conditioned place preference under different dietary conditions in rats. Psychopharmacology, 2015, 232, 2313-2322.	3.1	12
34	Aminoglutethimide, a corticosteroid synthesis inhibitor, facilitates brain stimulation reward in food-restricted rats: an investigation of underlying mechanisms. Psychopharmacology, 1997, 133, 405-412.	3.1	11
35	Involvement of nucleus accumbens AMPA receptor trafficking in augmentation of D- amphetamine reward in food-restricted rats. Psychopharmacology, 2014, 231, 3055-3063.	3.1	11
36	Effects of food restriction on expression of place conditioning and biochemical correlates in rat nucleus accumbens. Psychopharmacology, 2016, 233, 3161-3172.	3.1	8

#	Article	IF	CITATIONS
37	Repeated Inescapable Stress Produces a Neuroleptic-like Effect on the Conditioned Avoidance Response. Neuropsychopharmacology, 1995, 13, 129-138.	5.4	3
38	Effects of nucleus accumbens insulin inactivation on microstructure of licking for glucose and saccharin in male and female rats. Physiology and Behavior, 2022, 249, 113769.	2.1	3
39	Food Restriction and Reward in Rats. Neuromethods, 2013, , 261-280.	0.3	0