Mathew Gilliham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7499724/publications.pdf

Version: 2024-02-01

41344 38395 9,787 106 49 95 citations h-index g-index papers 132 132 132 9373 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	SpaceHort: redesigning plants to support space exploration and on-earth sustainability. Current Opinion in Biotechnology, 2022, 73, 246-252.	6.6	21
2	Plant Trans-Golgi Network/Early Endosome pH regulation requires Cation Chloride Cotransporter (CCC1). ELife, 2022, 11, .	6.0	6
3	Eustress in Space: Opportunities for Plant Stressors Beyond the Earth Ecosystem. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	8
4	Alluminating structure key to stress tolerance. Cell Research, 2022, 32, 5-6.	12.0	1
5	Enhanced reactive oxygen detoxification occurs in saltâ€stressed soybean roots expressing <scp><i>GmSALT3</i></scp> . Physiologia Plantarum, 2022, 174, e13709.	5.2	13
6	Root-Specific Expression of Vitis vinifera VviNPF2.2 Modulates Shoot Anion Concentration in Transgenic Arabidopsis. Frontiers in Plant Science, 2022, 13, .	3.6	1
7	<i>Corrigendum to</i> : Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Functional Plant Biology, 2022, 49, 672-672.	2.1	1
8	Soybean CHXâ€type ion transport protein GmSALT3 confers leaf Na ⁺ exclusion via a root derived mechanism, and Cl ^{â^} exclusion via a shoot derived process. Plant, Cell and Environment, 2021, 44, 856-869.	5.7	21
9	Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Functional Plant Biology, 2021, 48, 131.	2.1	22
10	Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network. Scientific Reports, 2021, 11, 1696.	3.3	3
11			

#	Article	IF	CITATIONS
19	Selection of the Salt Tolerance Gene GmSALT3 During Six Decades of Soybean Breeding in China. Frontiers in Plant Science, 2021, 12, 794241.	3.6	4
20	OUP accepted manuscript. Plant Physiology, 2021, , .	4.8	0
21	Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225, 1072-1090.	7.3	284
22	Cytosolic GABA inhibits anion transport by wheat ALMT1. New Phytologist, 2020, 225, 671-678.	7.3	27
23	High affinity Na ⁺ transport by wheat HKT1;5 is blocked by K ⁺ . Plant Direct, 2020, 4, e00275.	1.9	6
24	A single nucleotide substitution in <scp><i>TaHKT1</i></scp> ; <scp><i>5â€D</i></scp> controls shoot Na ⁺ accumulation in bread wheat. Plant, Cell and Environment, 2020, 43, 2158-2171.	5.7	18
25	Role of <scp>TaALMT1 malateâ€GABA</scp> transporter in alkaline <scp>pH</scp> tolerance of wheat. Plant, Cell and Environment, 2020, 43, 2443-2459.	5.7	16
26	The grapevine NaE sodium exclusion locus encodes sodium transporters with diverse transport properties and localisation. Journal of Plant Physiology, 2020, 246-247, 153113.	3.5	9
27	Wine Terroir and the Soil Bacteria: An Amplicon Sequencing–Based Assessment of the Barossa Valley and Its Sub-Regions. Frontiers in Microbiology, 2020, 11, 597944.	3.5	13
28	Barley sodium content is regulated by natural variants of the Na+ transporter HvHKT1;5. Communications Biology, 2020, 3, 258.	4.4	21
29	Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochemical Society Transactions, 2020, 48, 1683-1696.	3.4	22
30	Shoot thinning of Semillon in a hot climate did not improve yield and berry and wine quality. Oeno One, 2020, 54, 469-484.	1.4	3
31	Transcriptional variation is associated with differences in shoot sodium accumulation in distinct barley varieties. Environmental and Experimental Botany, 2019, 166, 103812.	4.2	5
32	Molecular and electrophysiological characterization of anion transport in <i>Arabidopsis thaliana</i> pollen reveals regulatory roles for <scp>pH</scp> , Ca ²⁺ and GABA. New Phytologist, 2019, 223, 1353-1371.	7.3	24
33	Roles of membrane transporters: connecting the dots from sequence to phenotype. Annals of Botany, 2019, 124, 201-208.	2.9	12
34	Low-cost cross-taxon enrichment of mitochondrial DNA using in-house synthesised RNA probes. PLoS ONE, 2019, 14, e0209499.	2.5	9
35	Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5015-5020.	7.1	138
36	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15

#	Article	IF	Citations
37	Postveraison Leaf Removal Does Not Consistently Delay Ripening in Semillon and Shiraz in a Hot Australian Climate. American Journal of Enology and Viticulture, 2019, 70, 398-410.	1.7	10
38	Aluminum-Activated Malate Transporters Can Facilitate GABA Transport. Plant Cell, 2018, 30, 1147-1164.	6.6	71
39	Root cell wall solutions for crop plants in saline soils. Plant Science, 2018, 269, 47-55.	3.6	159
40	Analysis of the salt exclusion phenotype in rooted leaves of grapevine (Vitis spp.). Australian Journal of Grape and Wine Research, 2018, 24, 317-326.	2.1	8
41	Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity. Cellular and Molecular Life Sciences, 2018, 75, 1133-1144.	5.4	45
42	Functional differences in transport properties of natural <scp>HKT</scp> 1;1 variants influence shoot Na ⁺ exclusion in grapevine rootstocks. New Phytologist, 2018, 217, 1113-1127.	7.3	66
43	A sterile hydroponic system for characterising root exudates from specific root types and whole-root systems of large crop plants. Plant Methods, 2018, 14, 114.	4.3	25
44	Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population. Theoretical and Applied Genetics, 2018, 131, 2179-2196.	3.6	60
45	Plant Cation-Chloride Cotransporters (CCC): Evolutionary Origins and Functional Insights. International Journal of Molecular Sciences, 2018, 19, 492.	4.1	19
46	Plants fighting back: to transport or not to transport, this is a structural question. Current Opinion in Plant Biology, 2018, 46, 68-76.	7.1	14
47	Chloride on the Move. Trends in Plant Science, 2017, 22, 236-248.	8.8	152
48	Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 2017, 68, 3129-3143.	4.8	187
49	A calmodulinâ€ike protein regulates plasmodesmal closure during bacterial immune responses. New Phytologist, 2017, 215, 77-84.	7.3	90
50	Chloride: not simply a â€~cheap osmoticum', but a beneficial plant macronutrient. Journal of Experimental Botany, 2017, 68, 3057-3069.	4.8	94
51	The sodium transporter encoded by the <i>HKT1</i> ; <i>2</i> gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant, Cell and Environment, 2017, 40, 658-671.	5.7	56
52	Translating knowledge about abiotic stress tolerance to breeding programmes. Plant Journal, 2017, 90, 898-917.	5.7	154
53	The case for evidenceâ€based policy to support stressâ€resilient cropping systems. Food and Energy Security, 2017, 6, 5-11.	4.3	4
54	Î ³ -Aminobutyric acid (GABA) signalling in plants. Cellular and Molecular Life Sciences, 2017, 74, 1577-1603.	5.4	205

#	Article	IF	Citations
55	Nonâ€selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca ²⁺ and pH. Plant, Cell and Environment, 2017, 40, 802-815.	5.7	153
56	Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses. Journal of Experimental Botany, 2017, 68, 4171-4183.	4.8	39
57	Global DNA Methylation Patterns Can Play a Role in Defining Terroir in Grapevine (Vitis vinifera cv.) Tj ETQq1 1 0.	784314 rg	gBT/Overlock
58	A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. ELife, 2017, 6, .	6.0	132
59	VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine. Sensors, 2016, 16, 585.	3.8	87
60	Fruit Calcium: Transport and Physiology. Frontiers in Plant Science, 2016, 7, 569.	3.6	233
61	GmSALT3, Which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl-Exclusion Prior to Na+ Exclusion But Does Not Improve Early Vigor under Salinity. Frontiers in Plant Science, 2016, 7, 1485.	3.6	71
62	Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Functional Plant Biology, 2016, 43, 1103.	2.1	162
63	SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Clâ^' accumulation and salt tolerance in <i>Arabidopsis thaliana</i> Journal of Experimental Botany, 2016, 67, 4495-4505.	4.8	70
64	The evolutionary origin of CIPK16: A gene involved in enhanced salt tolerance. Molecular Phylogenetics and Evolution, 2016, 100, 135-147.	2.7	10
65	Differential fruitset between grapevine cultivars is related to differences in pollen viability and amine concentration in flowers. Australian Journal of Grape and Wine Research, 2016, 22, 149-158.	2.1	12
66	A Barley Efflux Transporter Operates in a Na ⁺ -Dependent Manner, as Revealed by a Multidisciplinary Platform. Plant Cell, 2016, 28, 202-218.	6.6	29
67	Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis. Plant Physiology, 2016, 170, 1014-1029.	4.8	100
68	Salinity Negatively Affects Pollen Tube Growth and Fruit Set in Grapevines and Is Not Mitigated by Silicon. American Journal of Enology and Viticulture, 2016, 67, 218-228.	1.7	34
69	Linking Metabolism to Membrane Signaling: The GABA–Malate Connection. Trends in Plant Science, 2016, 21, 295-301.	8.8	104
70	AtNPF2.5 Modulates Chloride (Clâ^') Efflux from Roots of Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 2013.	3.6	65
71	Salinity tolerance of crops – what is the cost?. New Phytologist, 2015, 208, 668-673.	7.3	868
72	Grapevine and Arabidopsis cation-chloride cotransporters localise to the Golgi and trans-Golgi network and indirectly influence long-distance ion homeostasis and plant salt tolerance. Plant Physiology, 2015, 169, pp.00499.2015.	4.8	55

#	Article	IF	CITATIONS
73	Molecular identification and functional analysis of a maize (Zea mays) DUR3 homolog that transports urea with high affinity. Planta, 2015, 241, 861-874.	3.2	38
74	GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Communications, 2015, 6, 7879.	12.8	268
75	Salinity tolerance in soybean is modulated by natural variation in <i><i><scp>G</scp>m<scp>SALT</scp>3</i>. Plant Journal, 2014, 80, 937-950.</i>	5.7	217
76	Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1. Journal of Experimental Botany, 2014, 65, 2415-2426.	4.8	49
77	Protocol: a fast and simple in situ PCR method for localising gene expression in plant tissue. Plant Methods, 2014, 10, 29.	4.3	45
78	Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 2014, 14, 273.	3.6	78
79	Rapid shootâ€toâ€root signalling regulates root hydraulic conductance via aquaporins. Plant, Cell and Environment, 2014, 37, 520-538.	5 . 7	155
80	The Na ⁺ transporter, Ta <scp>HKT</scp> 1;5â€D, limits shoot Na ⁺ accumulation in bread wheat. Plant Journal, 2014, 80, 516-526.	5.7	170
81	Modified Method for Producing Grapevine Plants in Controlled Environments. American Journal of Enology and Viticulture, 2014, 65, 261-267.	1.7	14
82	Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods, 2013, 9, 4.	4.3	167
83	Plant High-Affinity Potassium (HKT) Transporters Involved in Salinity Tolerance: Structural Insights to Probe Differences in Ion Selectivity. International Journal of Molecular Sciences, 2013, 14, 7660-7680.	4.1	95
84	Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30, 360-364.	17.5	690
85	Exploiting natural variation to uncover candidate genes that control element accumulation in Arabidopsis thaliana. New Phytologist, 2012, 193, 859-866.	7.3	24
86	Transcriptomics on Small Samples. Methods in Molecular Biology, 2012, 913, 335-350.	0.9	2
87	Cell-Specific Vacuolar Calcium Storage Mediated by <i>CAX1</i> Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 240-257.	6.6	222
88	Glutamate Receptor–Like Genes Form Ca ²⁺ Channels in Pollen Tubes and Are Regulated by Pistil <scp> d </scp> -Serine. Science, 2011, 332, 434-437.	12.6	372
89	Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany, 2011, 62, 2233-2250.	4.8	208
90	Magnesium transporters, MGT2/MRS2â€1 and MGT3/MRS2â€5, are important for magnesium partitioning within <i>Arabidopsis thaliana</i> mesophyll vacuoles. New Phytologist, 2011, 190, 583-594.	7.3	99

#	Article	IF	Citations
91	Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivityâ€" another role for <i>TPC1</i> ?. Plant Signaling and Behavior, 2011, 6, 1656-1661.	2.4	34
92	Calcium storage in plants and the implications for calcium biofortification. Protoplasma, 2010, 247, 215-231.	2.1	117
93	Channel-Like Characteristics of the Low-Affinity Barley Phosphate Transporter PHT1;6 When Expressed in <i>Xenopus</i> Oocytes. Plant Physiology, 2010, 152, 1431-1441.	4.8	82
94	Comparative physiology of elemental distributions in plants. Annals of Botany, 2010, 105, 1081-1102.	2.9	288
95	Improved Salinity Tolerance of Rice Through Cell Type-Specific Expression of AtHKT1;1. PLoS ONE, 2010, 5, e12571.	2.5	140
96	Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in <i>Arabidopsis</i> À Â. Plant Cell, 2009, 21, 2163-2178.	6.6	480
97	The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies between Isohydric and Anisohydric Cultivars of Grapevine Â. Plant Physiology, 2009, 149, 445-460.	4.8	431
98	Water Transport & Aquaporins in Grapevine. , 2009, , 73-104.		4
99	Investigating glutamate receptorâ€ike gene coâ€expression in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2008, 31, 861-871.	5.7	110
100	NaClâ€induced changes in cytosolic free Ca ²⁺ in <i>Arabidopsis thaliana</i> are heterogeneous and modified by external ionic composition. Plant, Cell and Environment, 2008, 31, 1063-1073.	5.7	140
101	Simultaneous flux and current measurement from single plant protoplasts reveals a strong link between K+fluxes and current, but no link between Ca2+fluxes and current. Plant Journal, 2006, 46, 134-144.	5.7	20
102	The Arabidopsis thaliana Glutamate-like Receptor Family (AtGLR)., 2006,, 187-204.		11
103	The Regulation of Anion Loading to the Maize Root Xylem. Plant Physiology, 2005, 137, 819-828.	4.8	86
104	Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant Journal, 2000, 21, 225-229.	5.7	138
105	Membrane Structure and the Study of Solute Transport Across Plant Membranes., 0,, 47-74.		2
106	The Arabidopsis thaliana Glutamate-like Receptor Family (AtGLR)., 0,, 187-204.		0