Stefan Trapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7499330/publications.pdf Version: 2024-02-01

STEEAN TOADD

#	Article	IF	CITATIONS
1	Brain GLPâ€l and the regulation of food intake: GLPâ€l action in the brain and its implications for GLPâ€l receptor agonists in obesity treatment. British Journal of Pharmacology, 2022, 179, 557-570.	5.4	46
2	New developments in the prospects for GLPâ€1 therapy. British Journal of Pharmacology, 2022, 179, 489-491.	5.4	7
3	Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocrine Reviews, 2021, 42, 101-132.	20.1	115
4	Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Research in Cardiology, 2021, 116, 32.	5.9	32
5	Central and peripheral GLP-1 systems independently suppress eating. Nature Metabolism, 2021, 3, 258-273.	11.9	107
6	PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice. Molecular Metabolism, 2020, 39, 101024.	6.5	20
7	Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nature Communications, 2020, 11, 467.	12.8	88
8	Endogenous GLP-1 in lateral septum promotes satiety and suppresses motivation for food in mice. Physiology and Behavior, 2019, 206, 191-199.	2.1	37
9	Glucagon-Like Peptide-1-, but not Growth and Differentiation Factor 15-, Receptor Activation Increases the Number of Interleukin-6-Expressing Cells in the External Lateral Parabrachial Nucleus. Neuroendocrinology, 2019, 109, 310-321.	2.5	5
10	A unique olfactory bulb microcircuit driven by neurons expressing the precursor to glucagon-like peptide 1. Scientific Reports, 2019, 9, 15542.	3.3	24
11	Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Diabetes, 2019, 68, 21-33.	0.6	119
12	GLP-1 action in the mouse bed nucleus of the stria terminalis. Neuropharmacology, 2018, 131, 83-95.	4.1	39
13	GLPâ€l neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. Journal of Comparative Neurology, 2018, 526, 2149-2164.	1.6	27
14	New horizons for future research $\hat{a} \in$ Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	6.5	3
15	Vagal determinants of exercise capacity. Nature Communications, 2017, 8, 15097.	12.8	55
16	Serotonergic modulation of the activity of GLP-1 producing neurons in the nucleus of the solitary tract in mouse. Molecular Metabolism, 2017, 6, 909-921.	6.5	22
17	Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R115-R123.	1.8	21
18	Cardiac vagal preganglionic neurones: An update. Autonomic Neuroscience: Basic and Clinical, 2016, 199, 24-28.	2.8	64

STEFAN TRAPP

#	Article	IF	CITATIONS
19	The incretin hormone glucagonâ€like peptide 1 increases mitral cell excitability by decreasing conductance of a voltageâ€dependent potassium channel. Journal of Physiology, 2016, 594, 2607-2628.	2.9	43
20	The physiological role of the brain GLP-1 system in stress. Cogent Biology, 2016, 2, 1229086.	1.7	35
21	PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R795-R804.	1.8	64
22	Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart Rhythm, 2015, 12, 2285-2293.	0.7	82
23	Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Molecular Metabolism, 2015, 4, 718-731.	6.5	323
24	Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Molecular Metabolism, 2015, 4, 619-630.	6.5	40
25	Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience, 2015, 284, 872-887.	2.3	27
26	Identification and Characterization of GLP-1 Receptor–Expressing Cells Using a New Transgenic Mouse Model. Diabetes, 2014, 63, 1224-1233.	0.6	345
27	The Peutz-Jeghers kinase LKB1 suppresses polyp growth from intestinal cells of a proglucagon-expressing lineage. DMM Disease Models and Mechanisms, 2014, 7, 1275-86.	2.4	10
28	Optical control of insulin release using a photoswitchable sulfonylurea. Nature Communications, 2014, 5, 5116.	12.8	106
29	The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant?. Current Opinion in Pharmacology, 2013, 13, 964-969.	3.5	77
30	Preproglucagon (PPG) neurons innervate neurochemicallyidentified autonomic neurons in the mouse brainstem. Neuroscience, 2013, 229, 130-143.	2.3	52
31	Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovascular Research, 2012, 95, 487-494.	3.8	187
32	Autonomic Nervous System In Vitro: Studying Tonically Active Neurons Controlling Vagal Outflow in Rodent Brainstem Slices. Neuromethods, 2012, , 1-59.	0.3	15
33	CCK Stimulation of CLP-1 Neurons Involves α1-Adrenoceptor–Mediated Increase in Glutamatergic Synaptic Inputs. Diabetes, 2011, 60, 2701-2709.	0.6	78
34	Glucagon-like peptide 1 and the brain: Central actions–central sources?. Autonomic Neuroscience: Basic and Clinical, 2011, 161, 14-19.	2.8	28
35	Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience, 2011, 180, 111-121.	2.3	159
36	The role of the autonomic nervous system in acute surgical pain processing - what do we know?. Anaesthesia, 2011, 66, 541-544.	3.8	41

STEFAN TRAPP

#	Article	IF	CITATIONS
37	Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (<i>Kcnj16</i>). Experimental Physiology, 2011, 96, 451-459.	2.0	41
38	Dominant Negative Effects of a Non-conducting TREK1 Splice Variant Expressed in Brain*. Journal of Biological Chemistry, 2010, 285, 29295-29304.	3.4	37
39	Essential Role of Phox2b-Expressing Ventrolateral Brainstem Neurons in the Chemosensory Control of Inspiration and Expiration. Journal of Neuroscience, 2010, 30, 12466-12473.	3.6	136
40	Leptin Directly Depolarizes Preproglucagon Neurons in the Nucleus Tractus Solitarius. Diabetes, 2010, 59, 1890-1898.	0.6	127
41	Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener. Anesthesiology, 2010, 112, 623-630.	2.5	55
42	Neuronal Preconditioning by Inhalational Anesthetics. Anesthesiology, 2009, 110, 986-995.	2.5	84
43	A Role for TASK-1 (KCNK3) Channels in the Chemosensory Control of Breathing. Journal of Neuroscience, 2008, 28, 8844-8850.	3.6	124
44	lonic currents underlying the response of rat dorsal vagal neurones to hypoglycaemia and chemical anoxia. Journal of Physiology, 2007, 579, 691-702.	2.9	28
45	Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. Journal of Physiology, 2006, 570, 469-484.	2.9	105
46	TASK-like K+channels mediate effects of 5-HT and extracellular pH in rat dorsal vagal neuronesin vitro. Journal of Physiology, 2005, 568, 145-154.	2.9	24
47	Identification of residues contributing to the ATP binding site of Kir6.2. EMBO Journal, 2003, 22, 2903-2912.	7.8	74
48	Pyridine nucleotide regulation of the K ATP channel Kir6.2/SUR1 expressed in Xenopus oocytes. Journal of Physiology, 2003, 550, 357-363.	2.9	15
49	Inhibition of recombinant KATP channels by the antidiabetic agents midaglizole, LY397364 and LY389382. European Journal of Pharmacology, 2002, 452, 11-19.	3.5	8
50	Characterization of two novel forms of the rat sulphonylurea receptor SUR1A2 and SUR1BΔ31. British Journal of Pharmacology, 2002, 137, 98-106.	5.4	13
51	Direct interaction of Na-azide with the KATP channel. British Journal of Pharmacology, 2000, 131, 1105-1112.	5.4	8
52	lschemia But Not Anoxia Evokes Vesicular and Ca2+-Independent Glutamate Release In the Dorsal Vagal Complex In Vitro. Journal of Neurophysiology, 2000, 83, 2905-2915.	1.8	33
53	Functional Analysis of a Mutant Sulfonylurea Receptor, SUR1-R1420C, That Is Responsible for Persistent Hyperinsulinemic Hypoglycemia of Infancy. Journal of Biological Chemistry, 2000, 275, 41184-41191.	3.4	40
54	Altered functional properties of KATPchannel conferred by a novel splice variant of SUR1. Journal of Physiology, 1999, 521, 337-350.	2.9	38

STEFAN TRAPP

#	Article	IF	CITATIONS
55	Molecular determinants of KATP channel inhibition by ATP. EMBO Journal, 1998, 17, 3290-3296.	7.8	208
56	Mechanism of ATP-sensitive K Channel Inhibition by Sulfhydryl Modification. Journal of General Physiology, 1998, 112, 325-332.	1.9	35
57	Molecular Analysis of ATP-sensitive K Channel Gating and Implications for Channel Inhibition by ATP. Journal of General Physiology, 1998, 112, 333-349.	1.9	168
58	Activation and inhibition of K-ATP currents by guanine nucleotides is mediated by different channel subunits. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8872-8877.	7.1	60
59	GABA- and Glycine-Mediated Fall of Intracellular pH in Rat Medullary Neurons In Situ. Journal of Neurophysiology, 1997, 77, 1844-1852.	1.8	32
60	Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature, 1997, 387, 179-183.	27.8	723
61	A Metabolic Sensor in Action: News From the ATP-Sensitive K+-Channel. Physiology, 1997, 12, 255-263.	3.1	6
62	Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity Journal of Physiology, 1996, 496, 695-710.	2.9	63
63	Acidosis of hippocampal neurones mediated by a plasmalemmal Ca2+/H+ pump. NeuroReport, 1996, 7, 2000-2004.	1.2	82
64	KATP channel mediation of anoxiaâ€induced outward current in rat dorsal vagal neurons in vitro Journal of Physiology, 1995, 487, 37-50.	2.9	69
65	Spontaneous activation of KATP current in rat dorsal vagal neurones. NeuroReport, 1994, 5, 1285-1288.	1.2	23