Rolf Kiessling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 1986, 319, 675-678.	27.8	1,914
2	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395
3	Immature Immunosuppressive CD14+HLA-DRâ^'/low Cells in Melanoma Patients Are Stat3hi and Overexpress CD80, CD83, and DC-Sign. Cancer Research, 2010, 70, 4335-4345.	0.9	366
4	An Analysis of the Murine NK Cell as to Structure, Function and Biological Relevance. Immunological Reviews, 1979, 44, 165-208.	6.0	349
5	Hydrogen peroxide secreted by tumorâ€derived macrophages downâ€modulates signalâ€transducing zeta molecules and inhibits tumorâ€specific T cellâ€and natural killer cellâ€mediated cytotoxicity. European Journal of Immunology, 1996, 26, 1308-1313.	2.9	321
6	Inhibition of Tumor-Derived Prostaglandin-E2 Blocks the Induction of Myeloid-Derived Suppressor Cells and Recovers Natural Killer Cell Activity. Clinical Cancer Research, 2014, 20, 4096-4106.	7.0	230
7	Tumor-induced immune dysfunction. Cancer Immunology, Immunotherapy, 1999, 48, 353-362.	4.2	208
8	Alterations in the signal-transducing molecules of T cells and nk cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: Correlation with the stage of the disease. International Journal of Cancer, 1995, 61, 765-772.	5.1	191
9	On the armament and appearances of human myeloid-derived suppressor cells. Clinical Immunology, 2012, 144, 250-268.	3.2	168
10	Coexpressed Catalase Protects Chimeric Antigen Receptor–Redirected T Cells as well as Bystander Cells from Oxidative Stress–Induced Loss of Antitumor Activity. Journal of Immunology, 2016, 196, 759-766.	0.8	164
11	Melanoma-Educated CD14+ Cells Acquire a Myeloid-Derived Suppressor Cell Phenotype through COX-2–Dependent Mechanisms. Cancer Research, 2013, 73, 3877-3887.	0.9	160
12	Camouflage and sabotage: tumor escape from the immune system. Cancer Immunology, Immunotherapy, 2011, 60, 1161-1171.	4.2	150
13	Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends in Molecular Medicine, 2015, 21, 482-491.	6.7	146
14	Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. International Journal of Cancer, 2004, 108, 71-77.	5.1	138
15	IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood, 2016, 128, 1475-1489.	1.4	136
16	The epstein-barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in burkitt lymphoma lines. International Journal of Cancer, 1994, 57, 240-244.	5.1	132
17	Lack of interleukin-2 (IL-2) expression and selective expression of IL-10 mRNA in human renal cell carcinoma. International Journal of Cancer, 1995, 63, 366-371.	5.1	125
18	Inhibition of Activated/Memory (CD45RO+) T Cells by Oxidative Stress Associated with Block of NF-κB Activation. Journal of Immunology, 2001, 167, 2595-2601.	0.8	121

#	Article	IF	CITATIONS
19	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	4.6	119
20	Ipilimumab Treatment Results in an Early Decrease in the Frequency of Circulating Granulocytic Myeloid-Derived Suppressor Cells as well as Their Arginase1 Production. Cancer Immunology Research, 2013, 1, 158-162.	3.4	112
21	Role of hsp60 during Autoimmune and Bacterial Inflammation. Immunological Reviews, 1991, 121, 91-111.	6.0	110
22	Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma. Clinical Cancer Research, 2016, 22, 3849-3859.	7.0	109
23	Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. Journal of Translational Medicine, 2010, 8, 53.	4.4	104
24	Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget, 2017, 8, 21539-21553.	1.8	103
25	Tumor necrosis factor-α induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood, 2001, 98, 1108-1115.	1.4	102
26	Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32005-32016.	7.1	89
27	Transduction with the Antioxidant Enzyme Catalase Protects Human T Cells against Oxidative Stress. Journal of Immunology, 2008, 181, 8382-8390.	0.8	81
28	The MAPK Pathway Is a Predominant Regulator of HLA-A Expression in Esophageal and Gastric Cancer. Journal of Immunology, 2013, 191, 6261-6272.	0.8	79
29	Counteracting CAR T cell dysfunction. Oncogene, 2021, 40, 421-435.	5.9	76
30	Identification of HER2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes. International Journal of Cancer, 1998, 78, 202-208.	5.1	75
31	The CD16â^'CD56bright NK Cell Subset Is Resistant to Reactive Oxygen Species Produced by Activated Granulocytes and Has Higher Antioxidative Capacity Than the CD16+CD56dim Subset. Journal of Immunology, 2007, 179, 4513-4519.	0.8	73
32	Cellular immunity to the Her-2/neu protooncogene. Advances in Cancer Research, 2002, 85, 101-144.	5.0	72
33	A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer Immunology, Immunotherapy, 2014, 63, 1061-1071.	4.2	68
34	Expression of MHC Class I on breast cancer cells correlates inversely with HER2 expression. Oncolmmunology, 2012, 1, 1104-1110.	4.6	64
35	IL-15, TIM-3 and NK cells subsets predict responsiveness to anti-CTLA-4 treatment in melanoma patients. Oncolmmunology, 2017, 6, e1261242.	4.6	59
36	Increased susceptibility of ifn-Î ³ -treated neuroblastoma cells to lysis by lymphokine-activated killer cells: Participation of ICAM-1 induction on target cells. International Journal of Cancer, 1991, 47, 527-532.	5.1	58

#	Article	IF	CITATIONS
37	HER-2/neu is expressed in human renal cell carcinoma at heterogeneous levels independently of tumor grading and staging and can be recognized by HLA-A2.1-restricted cytotoxic T lymphocytes. International Journal of Cancer, 2000, 87, 349-359.	5.1	57
38	T cell recognition of HLAâ€A2 restricted tumor antigens is impaired by the oncogene HER2. International Journal of Cancer, 2011, 128, 390-401.	5.1	53
39	Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biology, 2014, 38, 69-83.	3.6	53
40	T cell receptor diversity and activation markers in the Vδ1 subset of rheumatoid synovial fluid and peripheral blood T lymphocytes. European Journal of Immunology, 1992, 22, 567-574.	2.9	51
41	HER2/HER3 Signaling Regulates NK Cell-Mediated Cytotoxicity via MHC Class I Chain-Related Molecule A and B Expression in Human Breast Cancer Cell Lines. Journal of Immunology, 2012, 188, 2136-2145.	0.8	51
42	Non-classical HLA-class I expression in serous ovarian carcinoma: Correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis. Oncolmmunology, 2016, 5, e1052213.	4.6	51
43	HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice. Cancer Immunology, Immunotherapy, 2009, 58, 653-664.	4.2	48
44	Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade. Oncolmmunology, 2016, 5, e1232222.	4.6	48
45	The Outcome of <i>Ex Vivo</i> TIL Expansion Is Highly Influenced by Spatial Heterogeneity of the Tumor T-Cell Repertoire and Differences in Intrinsic <i>In Vitro</i> Growth Capacity between T-Cell Clones. Clinical Cancer Research, 2020, 26, 4289-4301.	7.0	46
46	Prognostic significance of tumor iNOS and COX-2 in stageÂIII malignant cutaneous melanoma. Cancer Immunology, Immunotherapy, 2009, 58, 1085-1094.	4.2	44
47	Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma. , 2017, 5, 52.		42
48	Self-Delivering RNAi Targeting PD-1 Improves Tumor-Specific T Cell Functionality for Adoptive Cell Therapy of Malignant Melanoma. Molecular Therapy, 2018, 26, 1482-1493.	8.2	38
49	Immunosuppression in human tumor-host interaction: role of cytokines and alterations in signal-transducing molecules. Seminars in Immunopathology, 1996, 18, 227-242.	4.0	36
50	Dendritic cell regulation of NKâ€cell responses involves lymphotoxinâ€Î±, ILâ€12, and TGFâ€Î². European Journal of Immunology, 2015, 45, 1783-1793.	2.9	34
51	Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22910-22919.	7.1	32
52	Myeloid-derived suppressor cells and their role in CTLA-4 blockade therapy. Cancer Immunology, Immunotherapy, 2014, 63, 977-983.	4.2	31
53	Enhanced stimulation of human tumor-specific T cells by dendritic cells matured in the presence of interferon-Î ³ and multiple toll-like receptor agonists. Cancer Immunology, Immunotherapy, 2017, 66, 1333-1344.	4.2	31
54	Gamma-interferon (IFN-γ) produced during effector and target interactions renders target cells less susceptible to NK-cell-mediated lysis. International Journal of Cancer, 1983, 32, 609-616.	5.1	30

#	Article	IF	CITATIONS
55	Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. Oncolmmunology, 2020, 9, 1792058.	4.6	30
56	PD-1 checkpoint blockade in advanced melanoma patients: NK cells, monocytic subsets and host PD-L1 expression as predictive biomarker candidates. Oncolmmunology, 2020, 9, 1786888.	4.6	29
57	Expression and prognostic significance of iNOS in uveal melanoma. International Journal of Cancer, 2010, 126, 2682-2689.	5.1	28
58	HER-2/neu-mediated Down-regulation of Biglycan Associated with Altered Growth Properties. Journal of Biological Chemistry, 2012, 287, 24320-24329.	3.4	28
59	Mechanisms of escape from CD8+ T-cell clones specific for the HER-2/NEU proto-oncogene expressed in ovarian carcinomas: Related and unrelated to decreased MHC class 1 expression. , 1997, 70, 112-119.		27
60	The identification of a common pathogen-specific HLA class I A*0201-restricted cytotoxic T cell epitope encoded within the heat shock protein 65. European Journal of Immunology, 2001, 31, 3602-3611.	2.9	26
61	Contrasting Effects of the Cytotoxic Anticancer Drug Gemcitabine and the EGFR Tyrosine Kinase Inhibitor Gefitinib on NK Cell-Mediated Cytotoxicity via Regulation of NKG2D Ligand in Non-Small-Cell Lung Cancer Cells. PLoS ONE, 2015, 10, e0139809.	2.5	26
62	Cripto-1 Plasmid DNA Vaccination Targets Metastasis and Cancer Stem Cells in Murine Mammary Carcinoma. Cancer Immunology Research, 2018, 6, 1417-1425.	3.4	25
63	Antibody-Dependent Natural Killer Cell–Mediated Cytotoxicity Engendered by a Kinase-Inactive Human HER2 Adenovirus-Based Vaccination Mediates Resistance to Breast Tumors. Cancer Research, 2010, 70, 7431-7441.	0.9	24
64	Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Frontiers in Immunology, 2019, 10, 2766.	4.8	23
65	Interleukinâ€33 is a Novel Immunosuppressor that Protects Cancer Cells from TIL Killing by a Macrophageâ€Mediated Shedding Mechanism. Advanced Science, 2021, 8, 2101029.	11.2	20
66	DNA Immunization of HLA Transgenic Mice with a Plasmid Expressing Mycobacterial Heat Shock Protein 65 Results in HLA Class I- and II-Restricted T Cell Responses That Can Be Augmented by Cytokines. Human Gene Therapy, 2001, 12, 1797-1804.	2.7	19
67	Targeting of Nrf2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress. , 2022, 10, e004458.		18
68	Effect of IFN-Î ³ treatment andin vivo passage of murine tumor cell lines on their sensitivity to lymphokine-activated killef (LAK) cell lysisin vitro; association with H-2 expression on the target cells. International Journal of Cancer, 1989, 44, 669-674.	5.1	17
69	CD28 is not required for rejection of unmanipulated syngeneic and autologous tumors. European Journal of Immunology, 1997, 27, 1988-1993.	2.9	17
70	The two sides of HER2/neu: immune escape versus surveillance. Trends in Molecular Medicine, 2013, 19, 677-684.	6.7	17
71	Genetically modified immune cells targeting tumor antigens. , 2020, 214, 107603.		17
72	Cisplatin inhibits frequency and suppressive activity of monocytic myeloid-derived suppressor cells in cancer patients. Oncolmmunology, 2021, 10, 1935557.	4.6	17

#	Article	IF	CITATIONS
73	NF-κB activation during intradermal DNA vaccination is essential for eliciting tumor protective antigen-specific CTL responses. Human Vaccines and Immunotherapeutics, 2013, 9, 2189-2195.	3.3	15
74	Predicting anti-PD-1 responders in malignant melanoma from the frequency of S100A9+ monocytes in the blood. , 2021, 9, e002171.		12
75	Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS. PLoS ONE, 2015, 10, e0129786.	2.5	11
76	Caveolin-1-Mediated Tumor Suppression Is Linked to Reduced HIF1α S-Nitrosylation and Transcriptional Activity in Hypoxia. Cancers, 2020, 12, 2349.	3.7	11
77	Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization. Oncotarget, 2016, 7, 52061-52084.	1.8	11
78	Trogocytosis and fratricide killing impede MSLN-directed CAR T cell functionality. OncoImmunology, 2022, 11, .	4.6	9
79	Interferon-Î ³ renders tumors that express low levels of Her-2/neu sensitive to cytotoxic T cells. Cancer Immunology, Immunotherapy, 2006, 55, 653-662.	4.2	8
80	High expression of ID1 in monocytes is strongly associated with phenotypic and functional MDSC markers in advanced melanoma. Cancer Immunology, Immunotherapy, 2020, 69, 513-522.	4.2	6
81	Evaluating Antibody-Dependent Cell-Mediated Cytotoxicity by Flow Cytometry. Methods in Molecular Biology, 2019, 1913, 181-194.	0.9	5
82	Intratumoral vaccination with activated allogeneic dendritic cells in patients with newly diganosed metastatic renal cell carcinoma (mRCC) Journal of Clinical Oncology, 2014, 32, 3085-3085.	1.6	5
83	Myeloid Suppressors Decrease Melanoma Survival by Abating Tumor-Fighting T Cells. Clinical Cancer Research, 2014, 20, 1401-1403.	7.0	3
84	Assessment of Antitumor T-Cell Responses by Flow Cytometry After Coculture of Tumor Cells with Autologous Tumor-Infiltrating Lymphocytes. Methods in Molecular Biology, 2019, 1913, 133-140.	0.9	3
85	Opposing consequences of signaling through EGF family members. Oncolmmunology, 2012, 1, 1200-1201.	4.6	2
86	Generation of Tumor-Specific Cytotoxic T Cells From Blood via InÂVitro Expansion Using Autologous Dendritic Cells Pulsed With Neoantigen-Coupled Microbeads. Frontiers in Oncology, 2022, 12, 866763.	2.8	2
87	Response:Resistance of naturally occurring regulatory T cells toward oxidative stress: possible link with intracellular catecholamine content and implications for cancer therapy. Blood, 2009, 114, 488-489.	1.4	1
88	Designer lymphocytes to fight cancer: a helping hand from modern molecular biology. Journal of Molecular Medicine, 2010, 88, 1081-1084.	3.9	1
89	Cyclooxygenase-2. Oncolmmunology, 2013, 2, e25157.	4.6	1
90	Establishment of Melanoma Tumor Xenograft Using Single Cell Line Suspension and Co-injection of Patient-Derived T Cells in Immune-Deficient NSG Mice. Methods in Molecular Biology, 2019, 1913, 207-215.	0.9	1

#	Article	IF	CITATIONS
91	Evaluating Antibody-Dependent Cell-Mediated Cytotoxicity by Chromium Release Assay. Methods in Molecular Biology, 2019, 1913, 167-179.	0.9	1
92	Precision radiation of immune checkpoint therapy resistant melanoma metastases (PROMMEL study): study protocol for a phase II open-label multicenter trial. Acta Oncológica, 2022, 61, 869-873.	1.8	1
93	T Cell Blockade Immunotherapy Against Cancer and Abscopal Effect in Combination Therapy. Cancer Drug Discovery and Development, 2015, , 211-229.	0.4	0