
Wanquan Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytogenetic and marker assisted identification of a wheat–Psathyrostachys huashanica Keng f. ex P.C.Kuo alien substitution line conferring processing quality and resistance to stripe rust. Genetic Resources and Crop Evolution, 2022, 69, 687-698.	1.6	5
2	Identification and DNA Marker Development for a Wheat-Leymus mollis 2Ns (2D) Disomic Chromosome Substitution. International Journal of Molecular Sciences, 2022, 23, 2676.	4.1	3
3	Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat–Thinopyrum intermedium and wheat–Thinopyrum ponticum substitution lines. BMC Plant Biology, 2022, 22, 111.	3.6	8
4	Identification of Differentially Expressed Genes in Resistant Tetraploid Wheat (Triticum turgidum) under Sitobion avenae (F.) Infestation. International Journal of Molecular Sciences, 2022, 23, 6012.	4.1	1
5	An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. Journal of Experimental Botany, 2022, 73, 5474-5489.	4.8	2
6	Development and Molecular Cytogenetic Identification of Two Wheat-Aegilops geniculata Roth 7Mg Chromosome Substitution Lines with Resistance to Fusarium Head Blight, Powdery Mildew and Stripe Rust. International Journal of Molecular Sciences, 2022, 23, 7056.	4.1	3
7	Identification and expression analysis of heatâ€shock proteins in wheat infected with powdery mildew and stripe rust. Plant Genome, 2021, 14, e20092.	2.8	10
8	Chromosome karyotype and stability of new synthetic hexaploid wheat. Molecular Breeding, 2021, 41, 1.	2.1	4
9	A dominant spotted leaf gene TaSpl1 activates endocytosis and defense-related genes causing cell death in the absence of dominant inhibitors. Plant Science, 2021, 310, 110982.	3.6	4
10	Genome-wide identification, evolution, and expression of the <i>SNARE</i> gene family in wheat resistance to powdery mildew. PeerJ, 2021, 9, e10788.	2.0	6
11	Molecular cytogenetics for a wheat–Aegilops geniculata 3Mg alien addition line with resistance to stripe rust and powdery mildew. BMC Plant Biology, 2021, 21, 575.	3.6	4
12	Large-Scale Cloning and Comparative Analysis of TaNAC Genes in Response to Stripe Rust and Powdery Mildew in Wheat (Triticum aestivum L.). Genes, 2020, 11, 1073.	2.4	8
13	Cytogenetic Analysis and Molecular Marker Development for a New Wheat–Thinopyrum ponticum 1Js (1D) Disomic Substitution Line With Resistance to Stripe Rust and Powdery Mildew. Frontiers in Plant Science, 2020, 11, 1282.	3.6	18
14	Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. Journal of Genetics, 2020, 99, 1.	0.7	6
15	Molecular Characterization and Functional Analysis of Wheat TtLOX Gene Involved in Aphid Resistance. Agronomy, 2020, 10, 780.	3.0	1
16	Characterization and Evaluation of Resistance to Powdery Mildew of Wheat–Aegilops geniculata Roth 7Mg (7A) Alien Disomic Substitution Line W16998. International Journal of Molecular Sciences, 2020, 21, 1861.	4.1	12
17	Co-Regulation of Long Non-Coding RNAs with Allele-Specific Genes in Wheat Responding to Powdery Mildew Infection. Agronomy, 2020, 10, 896.	3.0	5
18	Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. Gene, 2020, 740, 144514.	2.2	43

Wanquan Ji

#	Article	IF	CITATIONS
19	The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. International Journal of Molecular Sciences, 2020, 21, 2659.	4.1	25
20	Genome-wide identification of GRAS genes in Brachypodium distachyon and functional characterization of BdSLR1 and BdSLRL1. BMC Genomics, 2019, 20, 635.	2.8	24
21	Molecular cytogenetic identification of two wheat–Thinopyrum ponticum substitution lines conferring stripe rust resistance. Molecular Breeding, 2019, 39, 1.	2.1	19
22	Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. Plant Science, 2019, 288, 110160.	3.6	41
23	Transcriptome and Proteome-Based Network Analysis Reveals a Model of Gene Activation in Wheat Resistance to Stripe Rust. International Journal of Molecular Sciences, 2019, 20, 1106.	4.1	24
24	Cloning, prokaryotic expression, and subcellular localisation of the <i>TaMAPK10-like</i> gene in common wheat. Canadian Journal of Plant Science, 2019, 99, 460-466.	0.9	1
25	The TIFY Gene Family in Wheat and its Progenitors: Genome-wide Identification, Evolution and Expression Analysis. Current Genomics, 2019, 20, 371-388.	1.6	7
26	Genome-Wide Identification and Expression Analysis of Heat Shock Transcription Factor Family in Chenopodium quinoa Willd. Agronomy, 2018, 8, 103.	3.0	13
27	Molecular cytogenetics identification of a wheat – <i>Leymus mollis</i> double disomic addition line with stripe rust resistance. Genome, 2017, 60, 375-383.	2.0	10
28	Molecular cytogenetic identification of a wheat – Thinopyrum ponticum substitution line with stripe rust resistance. Genome, 2017, 60, 860-867.	2.0	29
29	Isolation and molecular cytogenetic characterization of a wheat – Leymus mollis double monosomic addition line and its progenies with resistance to stripe rust. Genome, 2017, 60, 1029-1036.	2.0	7
30	Introgression of the Aegilops speltoides Su1-Ph1 Suppressor into Wheat. Frontiers in Plant Science, 2017, 8, 2163.	3.6	45
31	Development and molecular cytogenetic identification of a new wheat– <i>Leymus mollis</i> Lm#6Ns disomic addition line. Plant Breeding, 2016, 135, 654-662.	1.9	Ο
32	Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes. Journal of Genetics, 2016, 95, 819-830.	0.7	8
33	Molecular cytogenetic identification of a wheat–Aegilops geniculata Roth 7Mg disomic addition line with powdery mildew resistance. Molecular Breeding, 2016, 36, 1.	2.1	28
34	Molecular cytogenetic identification of a wheat–rye 1R addition line with multiple spikelets and resistance to powdery mildew. Genome, 2016, 59, 277-288.	2.0	25
35	Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics, 2016, 17, 238.	2.8	74
36	Identification and mapping of PmSE5785, a new recessive powdery mildew resistance locus, in synthetic hexaploid wheat. Euphytica, 2016, 207, 619-626.	1.2	14

Wanquan Ji

#	Article	IF	CITATIONS
37	Quantitative proteomics reveals the central changes of wheat in response to powdery mildew. Journal of Proteomics, 2016, 130, 108-119.	2.4	45
38	Spontaneous and Divergent Hexaploid Triticales Derived from Common Wheat × Rye by Complete Elimination of D-Genome Chromosomes. PLoS ONE, 2015, 10, e0120421.	2.5	26
39	Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress. PLoS ONE, 2015, 10, e0137990.	2.5	71
40	Identification and evaluation of disease resistance and HMW-GS composition of Aegilops geniculata Roth. Genetic Resources and Crop Evolution, 2015, 62, 1085-1093.	1.6	5
41	Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiology and Biochemistry, 2015, 96, 356-363.	5.8	75
42	Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147. Genetic Resources and Crop Evolution, 2015, 62, 407-418.	1.6	7
43	Development and Molecular Cytogenetic Identification of a Novel Wheat–Leymus mollis Lm#7Ns (7D) Disomic Substitution Line with Stripe Rust Resistance. PLoS ONE, 2015, 10, e0140227.	2.5	22
44	Development and discrimination of 12 double ditelosomics in tetraploid wheat cultivar DR147. Genome, 2014, 57, 89-95.	2.0	9
45	Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics, 2014, 15, 898.	2.8	178
46	Proteomic Analysis of the Defense Response of Wheat to the Powdery Mildew Fungus, Blumeria graminis f. sp. tritici. Protein Journal, 2014, 33, 513-524.	1.6	18
47	Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum) Tj ETQq1 1 0.784	4314 rgBT 2.3	/Overlock
48	Molecular characterisation and expression of a pathogen-induced senescence-associated gene in wheat (Triticum aestivum). Australasian Plant Pathology, 2013, 42, 53-61.	1.0	2
49	Genetic analysis of wheat (Triticum aestivum L.) and related species with SSR markers. Genetic Resources and Crop Evolution, 2013, 60, 1105-1117.	1.6	19
50	High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 2012, 124, 1549-1560.	3.6	54
51	Gene Expression in Wheat Induced by Inoculation with Puccinia striiformis West. Plant Molecular Biology Reporter, 2011, 29, 458-465.	1.8	18
52	Expression of special genes inhibited by powdery mildew (Blumeria graminis f. sp. tritici) in wheat germplasm N9436. Frontiers of Agriculture in China, 2010, 4, 10-17.	0.2	2
53	Comparison of the genetic diversity between Triticum aestivum ssp. tibetanum Shao and Tibetan wheat landraces (Triticum aestivum L.) by using intron-splice junction primers. Genetic Resources and Crop Evolution, 2010, 57, 1141-1150.	1.6	9