
Gaetan Laroche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7497474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyethylene terephthalate textile heart valve: How poly(ethylene glycol) grafting limits fibrosis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2110-2120.	3.4	1
2	Interplay of matrix stiffness and stress relaxation in directing osteogenic differentiation of mesenchymal stem cells. Biomaterials Science, 2022, 10, 4978-4996.	5.4	6
3	Atmosphericâ€pressure plasmaâ€enhanced chemical vapor deposition of nanocomposite thin films from ethyl lactate and silica nanoparticles. Plasma Processes and Polymers, 2021, 18, 2000153.	3.0	3
4	Response surface methodology as a predictive tool for the fabrication of coatings with optimal anti-fogging performance. Thin Solid Films, 2021, 718, 138482.	1.8	9
5	A new approach for synthesizing plasmonic polymer nanocomposite thin films by combining a gold salt aerosol and an atmospheric pressure low-temperature plasma. Nanotechnology, 2021, 32, 175601.	2.6	7
6	Evaluating Poly(Acrylamide―co â€Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromolecular Bioscience, 2021, 21, 2100069.	4.1	8
7	Fibronectin grafting to enhance skin sealing around transcutaneous titanium implant. Journal of Biomedical Materials Research - Part A, 2021, 109, 2187-2198.	4.0	8
8	Fourierâ€ŧransform infrared spectroscopy of ethyl lactate decomposition and thinâ€film coating in a filamentary and a glow dielectric barrier discharge. Plasma Processes and Polymers, 2021, 18, 2000248.	3.0	6
9	Directing hMSCs fate through geometrical cues and mimetics peptides. Journal of Biomedical Materials Research - Part A, 2020, 108, 201-211.	4.0	8
10	Milkweed scaffold: A new candidate for bone cell growth. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 872-883.	3.4	3
11	Effect of linking arm hydrophilic/hydrophobic nature, length and end-group on the conformation and the RGD accessibility of surface-immobilized fibronectin. Materials Science and Engineering C, 2020, 107, 110335.	7.3	6
12	Interpretation of artifacts in Fourier transform infrared spectra of atmospheric pressure dielectric barrier discharges: relationship with the plasma frequency between 300 Hz and 15 kHz. Journal Physics D: Applied Physics, 2020, 53, 015201.	2.8	5
13	Beyond microelectronics with 1,3,5,7-tetramethylcyclotetrasiloxane: A promising molecule for anti-fogging coatings. Materials Chemistry and Physics, 2020, 242, 122508.	4.0	7
14	Surface grafting of Fc-binding peptides as a simple platform to immobilize and identify antibodies that selectively capture circulating endothelial progenitor cells. Biomaterials Science, 2020, 8, 5465-5475.	5.4	8
15	Electrode cleanliness impact on the surface treatment of fluoropolymer films for a long-lasting plasma process. Manufacturing Letters, 2020, 26, 1-5.	2.2	2
16	Bioactive micropatterning of biomaterials for induction of endothelial progenitor cell differentiation: Acceleration of in situ endothelialization. Journal of Biomedical Materials Research - Part A, 2020, 108, 1479-1492.	4.0	4
17	Unveiling the origin of the anti-fogging performance of plasma-coated glass: Role of the structure and the chemistry of siloxane precursors. Progress in Organic Coatings, 2020, 141, 105401.	3.9	10
18	Atmospheric pressure Townsend discharges as a promising tool for the oneâ€step deposition of antifogging coatings from N 2 O/TMCTS mixtures. Plasma Processes and Polymers, 2020, 17, 1900186.	3.0	4

#	Article	IF	CITATIONS
19	Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid: A first step toward covalent immobilization of bioactive molecules. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110847.	5.0	24
20	Deposition of antiâ€fog coatings on glass substrates using the jet of an openâ€ŧoâ€air microwave argon plasma at atmospheric pressure. Plasma Processes and Polymers, 2020, 17, 1900229.	3.0	11
21	Isolating and expanding endothelial progenitor cells from peripheral blood on peptideâ€functionalized polystyrene surfaces. Biotechnology and Bioengineering, 2019, 116, 2598-2609.	3.3	4
22	Current trends, challenges, and perspectives of anti-fogging technology: Surface and material design, fabrication strategies, and beyond. Progress in Materials Science, 2019, 99, 106-186.	32.8	162
23	Water drop-surface interactions as the basis for the design of anti-fogging surfaces: Theory, practice, and applications trends. Advances in Colloid and Interface Science, 2019, 263, 68-94.	14.7	98
24	Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@TMSEDTA. Arabian Journal of Chemistry, 2019, 12, 4340-4347.	4.9	43
25	The spatial patterning of RGD and BMPâ€⊋ mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis. Journal of Biomedical Materials Research - Part A, 2018, 106, 959-970.	4.0	19
26	Single or Mixed Tethered Peptides To Promote hMSC Differentiation toward Osteoblastic Lineage. ACS Applied Bio Materials, 2018, 1, 1800-1809.	4.6	14
27	Transdermal diffusion, spatial distribution and physical state of a potential anticancer drug in mouse skin as studied by diffusion and spectroscopic techniques. Biomedical Spectroscopy and Imaging, 2018, 7, 47-61.	1.2	1
28	Dynamics of Endothelial Cell Responses to Laminar Shear Stress on Surfaces Functionalized with Fibronectin-Derived Peptides. ACS Biomaterials Science and Engineering, 2018, 4, 3779-3791.	5.2	14
29	Influence of a square pulse voltage on argon-ethyl lactate discharges and their plasma-deposited coatings using time-resolved spectroscopy and surface characterization. Physics of Plasmas, 2018, 25, 103504.	1.9	5
30	Partial Least-Squares Regression as a Tool To Predict Fluoropolymer Surface Modification by Dielectric Barrier Discharge in a Corona Process Configuration in a Nitrogen–Organic Gaseous Precursor Environment. Industrial & Engineering Chemistry Research, 2018, 57, 7476-7485.	3.7	6
31	Validation of reference genes for real-time PCR of cord blood mononuclear cells, differentiating endothelial progenitor cells, and mature endothelial cells. Experimental Cell Research, 2018, 370, 389-398.	2.6	12
32	Characterization of argon dielectric barrier discharges applied to ethyl lactate plasma polymerization. Journal Physics D: Applied Physics, 2017, 50, 475205.	2.8	11
33	Interplay of Geometric Cues and RGD/BMP-2 Crosstalk in Directing Stem Cell Fate. ACS Biomaterials Science and Engineering, 2017, 3, 2514-2523.	5.2	17
34	Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties. Carbohydrate Polymers, 2017, 178, 352-359.	10.2	35
35	Characterization of Carbon Anode Protected by Low Boron Level: An Attempt To Understand Carbon–Boron Inhibitor Mechanism. ACS Sustainable Chemistry and Engineering, 2017, 5, 6700-6706.	6.7	14
36	Application of Boron Oxide as a Protective Surface Treatment to Decrease the Air Reactivity of Carbon Anodes. Metals, 2017, 7, 79.	2.3	6

#	Article	IF	CITATIONS
37	Atmospheric Pressure Plasma Polymer of Ethyl Lactate: In Vitro Degradation and Cell Viability Studies. Plasma Processes and Polymers, 2016, 13, 711-721.	3.0	12
38	RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomaterialia, 2016, 36, 132-142.	8.3	100
39	Fibronectin-modified surfaces for evaluating the influence of cell adhesion on sensitivity of leukemic cells to siRNA nanoparticles. Nanomedicine, 2016, 11, 1123-1138.	3.3	15
40	Design, Degradation Mechanism and Longâ€Term Cytotoxicity of Poly(<scp>l</scp> â€lactide) and Poly(Lactideâ€coâ€iµâ€Caprolactone) Terpolymer Film and Airâ€Spun Nanofiber Scaffold. Macromolecular Bioscience, 2015, 15, 1392-1410.	4.1	25
41	Using infrared and Raman microspectroscopies to compare <i>ex vivo</i> involved psoriatic skin with normal human skin. Journal of Biomedical Optics, 2015, 20, 067004.	2.6	12
42	Rapid Nucleation of Iron Oxide Nanoclusters in Aqueous Solution by Plasma Electrochemistry. Langmuir, 2015, 31, 7633-7643.	3.5	15
43	Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications. Biomatter, 2014, 4, e27979.	2.6	6
44	A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomaterialia, 2014, 10, 2703-2711.	8.3	29
45	Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds. Materials Science and Engineering C, 2014, 35, 347-353.	7.3	15
46	Air‧pun PLA Nanofibers Modified with Reductively Sheddable Hydrophilic Surfaces for Vascular Tissue Engineering: Synthesis and Surface Modification. Macromolecular Rapid Communications, 2014, 35, 447-453.	3.9	20
47	A fluorophore-tagged RGD peptide to control endothelial cell adhesion to micropatterned surfaces. Biomaterials, 2014, 35, 879-890.	11.4	37
48	Characterization of the structure of human skin substitutes by infrared microspectroscopy. Analytical and Bioanalytical Chemistry, 2013, 405, 8709-8718.	3.7	22
49	Correlation between the Plasma Characteristics and the Surface Chemistry of Plasma-Treated Polymers through Partial Least-Squares Analysis. Langmuir, 2013, 29, 15859-15867.	3.5	9
50	Human saphenous vein endothelial cell adhesion and expansion on micropatterned polytetrafluoroethylene. Journal of Biomedical Materials Research - Part A, 2013, 101A, 694-703.	4.0	11
51	Impact of Peptide Micropatterning on Endothelial Cell Actin Remodeling for Cell Alignment under Shear Stress. Macromolecular Bioscience, 2012, 12, 1648-1659.	4.1	10
52	Air spun poly(lactic acid) nanofiber scaffold degradation for vascular tissue engineering: A 1H NMR study. Polymer Degradation and Stability, 2012, 97, 1520-1526.	5.8	11
53	Low Pressure Radio Frequency Ammonia Plasma Surface Modification on Poly(ethylene terephthalate) Films and Fibers: Effect of the Polymer Forming Process. Plasma Chemistry and Plasma Processing, 2012, 32, 17-33.	2.4	17
54	Characterization of Multilayer Anti-Fog Coatings. ACS Applied Materials & Interfaces, 2011, 3, 750-758.	8.0	137

#	Article	IF	CITATIONS
55	Anti-Fog Layer Deposition onto Polymer Materials: A Multi-Step Approach. Plasma Chemistry and Plasma Processing, 2011, 31, 175-187.	2.4	37
56	Micropatterning Polymer Materials to Improve Endothelialization. Advanced Materials Research, 2011, 409, 777-782.	0.3	2
57	Effect of C2H4/N2 Ratio in an Atmospheric Pressure Dielectric Barrier Discharge on the Plasma Deposition of Hydrogenated Amorphous Carbon-Nitride Films (a-C:N:H). Plasma Chemistry and Plasma Processing, 2010, 30, 213-239.	2.4	23
58	Characterization of an airâ€spun poly(<scp>L</scp> ″actic acid) nanofiber mesh. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 531-543.	3.4	20
59	On the ability of imatinib mesylate to inhibit smooth muscle cell proliferation without delaying endothelialization: An in vitro study. Vascular Pharmacology, 2009, 51, 50-56.	2.1	12
60	A poly(l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. Acta Biomaterialia, 2009, 5, 2418-2428.	8.3	42
61	Effects of Chemical Composition and the Addition of H ₂ in a N ₂ Atmospheric Pressure Dielectric Barrier Discharge on Polymer Surface Functionalization. Langmuir, 2009, 25, 9432-9440.	3.5	42
62	Engineering Biomaterials Surfaces Using Micropatterning. Advanced Materials Research, 2007, 15-17, 77-82.	0.3	2
63	AFM Imaging of Immobilized Fibronectin:  Does the Surface Conjugation Scheme Affect the Protein Orientation/Conformation?. Langmuir, 2007, 23, 9745-9751.	3.5	55
64	Covalent Grafting of Fibronectin onto Plasma-Treated PTFE: Influence of the Conjugation Strategy on Fibronectin Biological Activity. Macromolecular Bioscience, 2007, 7, 738-745.	4.1	48
65	Comparison of Atmospheric-Pressure Plasma versus Low-Pressure RF Plasma for Surface Functionalization of PTFE for Biomedical Applications. Plasma Processes and Polymers, 2006, 3, 506-515.	3.0	56
66	Micropatterning with aerosols: Application for biomaterials. Biomaterials, 2006, 27, 5430-5439.	11.4	15
67	In vitro Biological Performances of Phosphorylcholine-Grafted ePTFE Prostheses through RFGD Plasma Techniques. Macromolecular Bioscience, 2005, 5, 829-839.	4.1	50
68	Preparation of Ready-to-use, Stockable and Reconstituted Collagen. Macromolecular Bioscience, 2005, 5, 821-828.	4.1	69
69	Chemical and Morphological Characterization of Ultra-Thin Fluorocarbon Plasma-Polymer Deposition on 316 Stainless Steel Substrates: A First Step Toward the Improvement of the Long-Term Safety of Coated-Stents. Plasma Processes and Polymers, 2005, 2, 424-440.	3.0	37
70	Micropattern Printing of Adhesion, Spreading, and Migration Peptides on Poly(tetrafluoroethylene) Films To Promote Endothelialization. Bioconjugate Chemistry, 2005, 16, 1088-1097.	3.6	38
71	Denatured collagen as support for a FGF-2 delivery system: physicochemical characterizations and in vitro release kinetics and bioactivity. Biomaterials, 2004, 25, 3761-3772.	11.4	46
72	Engineering Surfaces for Bioconjugation:  Developing Strategies and Quantifying the Extent of the Reactions. Bioconjugate Chemistry, 2004, 15, 1146-1156.	3.6	51

#	Article	IF	CITATIONS
73	Albumin and fibrinogen adsorption onto phosphatidylcholine monolayers investigated by Fourier transform infrared spectroscopy. Colloids and Surfaces B: Biointerfaces, 2003, 29, 285-295.	5.0	34
74	Modification of lipid transport through a microporous PTFE membrane wall grafted with poly(ethylene glycol). Colloids and Surfaces B: Biointerfaces, 2002, 25, 205-217.	5.0	8
75	Commercial polyurethanes: The potential influence of auxiliary chemicals on the biodegradation process. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 729-749.	3.5	8
76	A new generation of polyurethane vascular prostheses: Rara Avis or Ignis Fatuus?. , 1999, 48, 546-558.		40
77	A Continuous and Pulsatile Flow Circulation System for Evaluation of Cardiovascular Devices. Artificial Organs, 1998, 22, 746-752.	1.9	12
78	Lipid uptake in expanded polytetrafluoroethylene vascular grafts. Journal of Vascular Surgery, 1998, 28, 527-534.	1.1	7
79	In vitro andin vivo studies of a polyester arterial prosthesis with a warp-knitted sharkskin structure. , 1997, 35, 459-472.		19
80	Chemical inactivators as sterilization agents for bovine collagen materials. , 1997, 37, 212-221.		24
81	Are Intraaortic Balloons Suitable for Reuse? A Survey Study of 112 Used Intraaortic Balloons. Artificial Organs, 1997, 21, 121-130.	1.9	7
82	Invivo characterization of a fluoropassivated gelatin-impregnated polyester mesh for hernia repair. , 1996, 32, 293-305.		23
83	Selecting valid in vitro biocompatibility tests that predict the in vivo healing response of synthetic vascular prostheses. Biomaterials, 1996, 17, 1835-1842.	11.4	20
84	Chemical and morphological analysis of explanted polyurethane vascular prostheses: the challenge of removing fixed adhering tissue. Biomaterials, 1996, 17, 1843-1848.	11.4	5
85	Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture. Journal of Biomedical Materials Research Part B, 1995, 29, 1525-1536.	3.1	160
86	Removing fresh tissue from explanted polyurethane prostheses: which approach facilitates physico-chemical analysis?. Biomaterials, 1995, 16, 369-380.	11.4	23
87	Polyvinylidene Fluoride Monofilament Sutures: Can They Be Used Safely for Longâ€Term Anastomoses in the Thoracic Aorta?. Artificial Organs, 1995, 19, 1190-1199.	1.9	40
88	Effect of a thin organosilicon layer prepared by atmospheric pressure plasma on wood flame retardancy. Plasma Processes and Polymers, 0, , .	3.0	2