Patrick Coit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7497052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide DNA methylation study suggests epigenetic accessibility andÂtranscriptional poising of interferon-regulated genes in naà ve CD4+ T cellsÂfrom lupus patients. Journal of Autoimmunity, 2013, 43, 78-84.	6.5	294
2	Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clinical Immunology, 2020, 215, 108410.	3.2	217
3	Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. Journal of Autoimmunity, 2015, 58, 59-66.	6.5	161
4	Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Annals of the Rheumatic Diseases, 2015, 74, 1612-1620.	0.9	148
5	Renal involvement in lupus is characterized by unique DNA methylation changes in naÃ⁻ve CD4+ T cells. Journal of Autoimmunity, 2015, 61, 29-35.	6.5	109
6	Epigenetic Reprogramming in Naive CD4+ T Cells Favoring T Cell Activation and Nonâ€Th1 Effector T Cell Immune Response as an Early Event in Lupus Flares. Arthritis and Rheumatology, 2016, 68, 2200-2209.	5.6	88
7	Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behçet's disease. Clinical Immunology, 2016, 169, 28-35.	3.2	88
8	DNA methylation patterns in naÃ ⁻ ve CD4+ T cells identify epigenetic susceptibility loci for malar rash and discoid rash in systemic lupus erythematosus. Lupus Science and Medicine, 2015, 2, e000101.	2.7	83
9	Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proceedings of the United States of America, 2019, 116, 3695-3702.	7.1	77
10	Systemic lupus erythematosus complicated by diffuse alveolar haemorrhage: risk factors, therapy and survival. Lupus Science and Medicine, 2015, 2, e000117.	2.7	59
11	DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis. Annals of the Rheumatic Diseases, 2016, 75, 1196-1202.	0.9	55
12	Genome-wide profiling identifies associations between lupus nephritis and differential methylation of genes regulating tissue hypoxia and type 1 interferon responses. Lupus Science and Medicine, 2016, 3, e000183.	2.7	54
13	Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26779-26787.	7.1	53
14	Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Scientific Reports, 2017, 7, 43953.	3.3	52
15	Ethnicity-specific epigenetic variation in naÃ ⁻ ve CD4+ T cells and the susceptibility to autoimmunity. Epigenetics and Chromatin, 2015, 8, 49.	3.9	49
16	Age-associated DNA methylation changes in naive CD4 ⁺ T cells suggest an evolving autoimmune epigenotype in aging T cells. Epigenomics, 2017, 9, 429-445.	2.1	47
17	Shared epitope–aryl hydrocarbon receptor crosstalk underlies the mechanism of gene–environment interaction in autoimmune arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4755-4760.	7.1	45
18	A longitudinal and transancestral analysis of DNA methylation patterns and disease activity in lupus patients. JCI Insight, 2020, 5, .	5.0	36

PATRICK COIT

#	Article	IF	CITATIONS
19	The human microbiome in rheumatic autoimmune diseases: A comprehensive review. Clinical Immunology, 2016, 170, 70-79.	3.2	35
20	Epigenetics and Vasculitis: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2016, 50, 357-366.	6.5	33
21	An update on the role of epigenetics in systemic vasculitis. Current Opinion in Rheumatology, 2018, 30, 4-15.	4.3	29
22	Hypomethylation of <i>STAT1</i> and <i>HLA-DRB1</i> is associated with type-l interferon-dependent <i>HLA-DRB1</i> expression in lupus CD8+ T cells. Annals of the Rheumatic Diseases, 2019, 78, 519-528.	0.9	29
23	Genome-wide DNA methylation analysis in primary antiphospholipid syndrome neutrophils. Clinical Immunology, 2018, 196, 110-116.	3.2	26
24	Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. American Journal of Human Genetics, 2021, 108, 84-99.	6.2	26
25	The DNA methylation signature of human TCRαβ+CD4â^'CD8â^' double negative T cells reveals CG demethylation and a unique epigenetic architecture permissive to a broad stimulatory immune response. Clinical Immunology, 2015, 156, 19-27.	3.2	25
26	Genome-wide DNA methylation analysis in ankylosing spondylitis identifies HLA-B*27 dependent and independent DNA methylation changes in whole blood. Journal of Autoimmunity, 2019, 102, 126-132.	6.5	24
27	CD4+CD28+KIR+CD11ahi T cells correlate with disease activity and are characterized by a pro-inflammatory epigenetic and transcriptional profile in lupus patients. Journal of Autoimmunity, 2018, 86, 19-28.	6.5	21
28	Hypomethylation of miR-17-92 cluster in lupus T cells and no significant role for genetic factors in the lupus-associated DNA methylation signature. Annals of the Rheumatic Diseases, 2022, 81, 1428-1437.	0.9	5
29	DNA methylation patterns in juvenile systemic sclerosis and localized scleroderma. Clinical Immunology, 2021, 228, 108756.	3.2	4
30	Clinical subgroup clustering analysis in a systemic lupus erythematosus cohort from Western Pennsylvania. European Journal of Rheumatology, 2022, 9, 3-7.	0.6	4
31	GG-01â€Hypomethylation of <i>STAT1</i> and <i>HLA-DRB1</i> in CD8+ T cells is associated with type-I interferon-dependent <i>HLA-DRB1</i> overexpression and activation of autologous CD4+ T cells in systemic lupus erythematosus. , 2018, , .		0
32	1507â€The relationship between DNA methylation patterns and disease activity in a longitudinal multi-ancestral cohort of lupus patients. , 2021, , .		0