
Wilfried Rozhon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7496256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GSK3â€mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in <i>Arabidopsis</i> . FEBS Journal, 2022, 289, 473-493.	4.7	7
2	Dual control of MAPK activities by AP2C1 and MKP1 MAPK phosphatases regulates defence responses in Arabidopsis. Journal of Experimental Botany, 2022, 73, 2369-2384.	4.8	12
3	The Effect of Salinity on Fruit Quality and Yield of Cherry Tomatoes. Horticulturae, 2022, 8, 59.	2.8	15
4	Synergistic Effects of a Root-Endophytic <i>Trichoderma</i> Fungus and <i>Bacillus</i> on Early Root Colonization and Defense Activation Against <i>Verticillium longisporum</i> in Rapeseed. Molecular Plant-Microbe Interactions, 2022, 35, 380-392.	2.6	11
5	Brassinosteroid-regulated bHLH transcription factor CESTA induces the gibberellin 2-oxidase <i>GA2ox7</i> . Plant Physiology, 2022, 188, 2012-2025.	4.8	12
6	Plant Nutrition: Physiological and Metabolic Responses, Molecular Mechanisms and Chromatin Modifications. International Journal of Molecular Sciences, 2022, 23, 4084.	4.1	1
7	The acyltransferase PMAT1 malonylates brassinolide glucoside. Journal of Biological Chemistry, 2021, 296, 100424.	3.4	4
8	The Orphan Crop Crassocephalum crepidioides Accumulates the Pyrrolizidine Alkaloid Jacobine in Response to Nitrogen Starvation. Frontiers in Plant Science, 2021, 12, 702985.	3.6	4
9	Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant Journal, 2020, 102, 68-84.	5.7	22
10	The BAHD Acyltransferase BIA1 Uses Acetyl-CoA for Catabolic Inactivation of Brassinosteroids. Plant Physiology, 2020, 184, 23-26.	4.8	5
11	Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genes <i>Fv<scp>XTH</scp>9</i> and <i>Fv<scp>XTH</scp>6</i> accelerates fruit ripening. Plant Journal, 2019, 100, 1237-1253.	5.7	51
12	Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules, 2019, 24, 498.	3.8	104
13	Determination of the [15N]-Nitrate/[14N]-Nitrate Ratio in Plant Feeding Studies by GC–MS. Molecules, 2019, 24, 1531.	3.8	2
14	Inhibitors of Brassinosteroid Biosynthesis and Signal Transduction. Molecules, 2019, 24, 4372.	3.8	29
15	Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize. Theoretical and Applied Genetics, 2019, 132, 53-63.	3.6	26
16	Analysis of DNA Methylation Content and Patterns in Plants. Methods in Molecular Biology, 2018, 1694, 277-298.	0.9	6
17	Quantification of the Pyrrolizidine Alkaloid Jacobine in <scp><i>Crassocephalum crepidioides</i></scp> by Cation Exchange Highâ€Performance Liquid Chromatography. Phytochemical Analysis, 2018, 29, 48-58.	2.4	11
18	Quantification of sugars and organic acids in tomato fruits. MethodsX, 2018, 5, 537-550.	1.6	82

WILFRIED ROZHON

#	Article	IF	CITATIONS
19	Assay for abscisic acid 8′-hydroxylase activity of cloned plant cytochrome P450 oxidases in Saccharomyces cerevisiae. Analytical Biochemistry, 2018, 553, 24-27.	2.4	6
20	Quantification of Glutamate and Aspartate by Ultra-High Performance Liquid Chromatography. Molecules, 2018, 23, 1389.	3.8	21
21	The replication protein of pHW126 auto-controls its expression. Plasmid, 2017, 90, 38-43.	1.4	3
22	Analysis of In Vitro DNA Interactions of Brassinosteroid-Controlled Transcription Factors Using Electrophoretic Mobility Shift Assay. Methods in Molecular Biology, 2017, 1564, 133-144.	0.9	6
23	The small molecule hyperphyllin enhances leaf formation rate and mimics shoot meristem integrity defects associated with AMP1 deficiency. Plant Physiology, 2016, 171, pp.01633.2015.	4.8	5
24	Reply: Interaction between Brassinosteroids and Gibberellins: Synthesis or Signaling? In Arabidopsis, Both!. Plant Cell, 2016, 28, 836-839.	6.6	21
25	Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5982-E5991.	7.1	162
26	Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences, 2016, 73, 797-810.	5.4	243
27	<scp>ENO</scp> 2 activity is required for the development and reproductive success of plants, and is feedbackâ€repressed by <scp>A</scp> t <scp>MBP</scp> â€1. Plant Journal, 2015, 81, 895-906.	5.7	50
28	Repair of DNA Damage Induced by the Cytidine Analog Zebularine Requires ATR and ATM in Arabidopsis. Plant Cell, 2015, 27, 1788-1800.	6.6	50
29	Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis. Plant Cell, 2015, 27, 2261-2272.	6.6	190
30	A novel <scp>A</scp> rabidopsis <scp>CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1)</scp> mutant with enhanced pathogenâ€induced cell death and altered receptor processing. New Phytologist, 2014, 204, 955-967.	7.3	55
31	The Role of Hormones in the Aging of Plants - A Mini-Review. Gerontology, 2014, 60, 49-55.	2.8	133
32	Bikinin-like inhibitors targeting GSK3/Shaggy-like kinases: characterisation of novel compounds and elucidation of their catabolism in planta. BMC Plant Biology, 2014, 14, 172.	3.6	15
33	Interplay between phosphorylation and SUMOylation events determines CESTA protein fate in brassinosteroid signalling. Nature Communications, 2014, 5, 4687.	12.8	46
34	Characterisation of the stbD/E toxin–antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae. Plasmid, 2013, 70, 216-225.	1.4	18
35	Brassinosteroid-regulated GSK3/Shaggy-like Kinases Phosphorylate Mitogen-activated Protein (MAP) Kinase Kinases, Which Control Stomata Development in Arabidopsis thaliana. Journal of Biological Chemistry, 2013, 288, 7519-7527.	3.4	152
36	Toxin–antitoxin systems. Mobile Genetic Elements, 2013, 3, e26219.	1.8	279

WILFRIED ROZHON

#	Article	IF	CITATIONS
37	Genetic Variation in Plant CYP51s Confers Resistance against Voriconazole, a Novel Inhibitor of Brassinosteroid-Dependent Sterol Biosynthesis. PLoS ONE, 2013, 8, e53650.	2.5	18
38	Stress-Induced GSK3 Regulates the Redox Stress Response by Phosphorylating Glucose-6-Phosphate Dehydrogenase in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 3380-3392.	6.6	151
39	Constitutively Active Mitogen-Activated Protein Kinase Versions Reveal Functions of <i>Arabidopsis</i> MPK4 in Pathogen Defense Signaling. Plant Cell, 2012, 24, 4281-4293.	6.6	163
40	Identification of the region required for maintaining pHW126 in its monomeric form. FEMS Microbiology Letters, 2012, 331, 89-96.	1.8	5
41	CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO Journal, 2011, 30, 1149-1161.	7.8	115
42	Identification of cis- and trans-acting elements in pHW126, a representative of a novel group of rolling circle plasmids. Plasmid, 2011, 65, 70-76.	1.4	9
43	Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biology, 2011, 11, 51.	3.6	93
44	Frequency and diversity of small cryptic plasmids in the genus Rahnella. BMC Microbiology, 2010, 10, 56.	3.3	25
45	ASKÎ, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. Plant Journal, 2010, 62, 215-223.	5.7	78
46	Cooperation of Multiple Chromatin Modifications Can Generate Unanticipated Stability of Epigenetic States in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2010, 22, 34-47.	6.6	82
47	Erwinia amylovora-induced defense mechanisms of two apple species that differ in susceptibility to fire blight. Plant Science, 2010, 179, 60-67.	3.6	41
48	Compromised stability of DNA methylation and transposon immobilization in mosaic <i>Arabidopsis</i> epigenomes. Genes and Development, 2009, 23, 939-950.	5.9	380
49	Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant Journal, 2009, 57, 542-554.	5.7	102
50	Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling. Chemistry and Biology, 2009, 16, 594-604.	6.0	240
51	Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography. Analytical Biochemistry, 2008, 375, 354-360.	2.4	66
52	A Proteasome-regulated Glycogen Synthase Kinase-3 Modulates Disease Response in Plants*. Journal of Biological Chemistry, 2007, 282, 5249-5255.	3.4	32
53	A plastid-localized glycogen synthase kinaseâ $\in f$ 3 modulates stress tolerance and carbohydrate metabolism. Plant Journal, 2007, 49, 1076-1090.	5.7	70
54	Isolation and characterization of pHW15, a small cryptic plasmid from Rahnella genomospecies 2. Plasmid, 2006, 56, 202-215.	1.4	18

#	Article	IF	CITATIONS
55	Quantification of free and total salicylic acid in plants by solid-phase extraction and isocratic high-performance anion-exchange chromatography. Analytical and Bioanalytical Chemistry, 2005, 382, 1620-1627.	3.7	30
56	A MAPK pathway mediates ethylene signaling in plants. EMBO Journal, 2003, 22, 1282-1288.	7.8	288
57	The Natural Antibiotic Resistances of the Enterobacteriaceae Rahnella and Ewingella. , 0, , .		1
58	SICESTA Is a Brassinosteroid-Regulated bHLH Transcription Factor of Tomato That Promotes Chilling Tolerance and Fruit Growth When Over-Expressed. Frontiers in Plant Science, 0, 13, .	3.6	1