
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7496197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Self-Fulfilling Prophecy. Circulation, 2002, 106, 913-919.	1.6	924
2	Clinical and Pathophysiological Implications of a Bicuspid Aortic Valve. Circulation, 2002, 106, 900-904.	1.6	705
3	Resistin Promotes Endothelial Cell Activation. Circulation, 2003, 108, 736-740.	1.6	601
4	Endothelin Antagonism and Interleukin-6 Inhibition Attenuate the Proatherogenic Effects of C-Reactive Protein. Circulation, 2002, 105, 1890-1896.	1.6	559
5	The Role of the Plasma from Platelet Concentrates in Transfusion Reactions. New England Journal of Medicine, 1994, 331, 625-628.	13.9	504
6	C-Reactive Protein Attenuates Endothelial Progenitor Cell Survival, Differentiation, and Function. Circulation, 2004, 109, 2058-2067.	1.6	501
7	C-Reactive Protein Upregulates Angiotensin Type 1 Receptors in Vascular Smooth Muscle. Circulation, 2003, 107, 1783-1790.	1.6	492
8	Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 2006, 116, 1865-1877.	3.9	468
9	Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 797-805.	0.4	402
10	Fundamentals of Reperfusion Injury for the Clinical Cardiologist. Circulation, 2002, 105, 2332-2336.	1.6	367
11	Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy. Journal of the American College of Cardiology, 2015, 66, 892-900.	1.2	360
12	Bicuspid Aortic Cusp Fusion Morphology Alters Aortic Three-Dimensional Outflow Patterns, Wall Shear Stress, and Expression of Aortopathy. Circulation, 2014, 129, 673-682.	1.6	350
13	Should the ascending aorta be replaced more frequently in patients with bicuspid aortic valve disease?. Journal of Thoracic and Cardiovascular Surgery, 2004, 128, 677-683.	0.4	305
14	Endothelial Progenitor Cells. Circulation, 2003, 107, 3093-3100.	1.6	255
15	Hepatocyte Growth Factor or Vascular Endothelial Growth Factor Gene Transfer Maximizes Mesenchymal Stem Cell–Based Myocardial Salvage After Acute Myocardial Infarction. Circulation, 2009, 120, S247-54.	1.6	202
16	The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve–related aortopathy: Full online-only version. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, e41-e74.	0.4	202
17	Comparison of coronary artery bypass surgery and percutaneous coronary intervention in patients with diabetes: a meta-analysis of randomised controlled trials. Lancet Diabetes and Endocrinology,the, 2013, 1, 317-328.	5.5	195
18	TIMP-3 Deficiency Leads to Dilated Cardiomyopathy. Circulation, 2004, 110, 2401-2409.	1.6	154

#	Article	IF	CITATIONS
19	Evolving Concepts and Technologies in Mitral Valve Repair. Circulation, 2008, 117, 963-974.	1.6	149
20	Rosiglitazone Facilitates Angiogenic Progenitor Cell Differentiation Toward Endothelial Lineage. Circulation, 2004, 109, 1392-1400.	1.6	148
21	Cardiac remodeling and failure. Cardiovascular Pathology, 2005, 14, 1-11.	0.7	135
22	Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 2002, 106, 1137-42.	1.6	135
23	Aortic Valve Stenosis Alters Expression of Regional Aortic Wall Shear Stress: New Insights From a 4â€Dimensional Flow Magnetic Resonance Imaging Study of 571 Subjects. Journal of the American Heart Association, 2017, 6, .	1.6	126
24	C-Reactive Protein Alters Antioxidant Defenses and Promotes Apoptosis in Endothelial Progenitor Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2476-2482.	1.1	123
25	Mitochondrial NLRP3 Protein Induces Reactive Oxygen Species to Promote Smad Protein Signaling and Fibrosis Independent from the Inflammasome. Journal of Biological Chemistry, 2014, 289, 19571-19584.	1.6	120
26	Integrin-Linked Kinase Expression Is Elevated in Human Cardiac Hypertrophy and Induces Hypertrophy in Transgenic Mice. Circulation, 2006, 114, 2271-2279.	1.6	116
27	Mechanical Stretch Regimen Enhances the Formation of Bioengineered Autologous Cardiac Muscle Grafts. Circulation, 2002, 106, .	1.6	115
28	Cardiac remodeling and failure. Cardiovascular Pathology, 2005, 14, 49-60.	0.7	112
29	Gata6+ Pericardial Cavity Macrophages Relocate to the Injured Heart and Prevent Cardiac Fibrosis. Immunity, 2019, 51, 131-140.e5.	6.6	110
30	Aortic valve-mediated wall shear stress is heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve-associated aortopathy. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 2112-2120.e2.	0.4	103
31	Altered Expression of Disintegrin Metalloproteinases and Their Inhibitor in Human Dilated Cardiomyopathy. Circulation, 2006, 113, 238-245.	1.6	99
32	Glitazones and Heart Failure. Circulation, 2003, 107, 1350-1354.	1.6	91
33	Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H626-H634.	1.5	90
34	Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Canadian Journal of Cardiology, 2020, 36, 543-553.	0.8	89
35	Cell transplantation preserves cardiac function after infarction by infarct stabilization: Augmentation by stem cell factor. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 1310.e1-1310.e10.	0.4	84
36	Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascular Pharmacology, 2018, 109, 56-71.	1.0	84

#	Article	IF	CITATIONS
37	C-reactive protein activates the nuclear factor-κB signal transduction pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1886-1891.	0.4	83
38	Characterization of Abnormal Wall Shear Stress Using 4D Flow MRI in Human Bicuspid Aortopathy. Annals of Biomedical Engineering, 2015, 43, 1385-1397.	1.3	82
39	Knowledge, attitudes, and practice patterns in surgical management of bicuspid aortopathy: A survey of 100 cardiac surgeons. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 1033-1040.e4.	0.4	80
40	C-Reactive Protein Upregulates Complement-Inhibitory Factors in Endothelial Cells. Circulation, 2004, 109, 833-836.	1.6	78
41	Stem Cell Factor Deficiency Is Vasculoprotective. Circulation Research, 2006, 99, 617-625.	2.0	73
42	The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve–related aortiopathy: Executive summary. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 473-480.	0.4	70
43	C-Reactive Protein Upregulates Receptor for Advanced Glycation End Products Expression in Human Endothelial Cells. Hypertension, 2006, 48, 504-511.	1.3	68
44	Epicardial infarct repair with basic fibroblast growth factor–enhanced CorMatrix-ECM biomaterial attenuates postischemic cardiac remodeling. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1650-1659.	0.4	66
45	Hyperglycemia exaggerates ischemia-reperfusion–induced cardiomyocyte injury: Reversal with endothelin antagonism. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1120-1124.	0.4	64
46	International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. European Journal of Cardio-thoracic Surgery, 2021, 60, 448-476.	0.6	61
47	Bicuspid aortic valve disease: recent insights in pathophysiology and treatment. Expert Review of Cardiovascular Therapy, 2005, 3, 295-308.	0.6	60
48	Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. Journal of Translational Medicine, 2015, 13, 147.	1.8	56
49	TIMP-3 deficiency accelerates cardiac remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2007, 43, 733-743.	0.9	55
50	Kryptonite Bone Cement Prevents Pathologic Sternal Displacement. Annals of Thoracic Surgery, 2010, 90, 979-985.	0.7	54
51	Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β ₁ . American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H716-H724.	1.5	53
52	Epicardial infarct repair with bioinductive extracellular matrix promotes vasculogenesis and myocardial recovery. Journal of Heart and Lung Transplantation, 2016, 35, 661-670.	0.3	52
53	Cell-Specific Functions of ADAM17 Regulate the Progression of Thoracic Aortic Aneurysm. Circulation Research, 2018, 123, 372-388.	2.0	51
54	Hyperglycemia potentiates the proatherogenic effects of C-reactive protein: reversal with rosiglitazone. Journal of Molecular and Cellular Cardiology, 2003, 35, 417-419.	0.9	50

#	Article	IF	CITATIONS
55	Cell transplantation preserves matrix homeostasis: A novel paracrine mechanism. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 1430-1439.	0.4	49
56	Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: Identifying cellular targets for pharmacologic manipulation. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1074-1083.	0.4	48
57	Canadian Cardiovascular Society/Canadian Association ofÂInterventional Cardiology/Canadian Society of CardiacÂSurgery Position Statement on Revascularization—Multivessel Coronary Artery Disease. Canadian Journal of Cardiology, 2014, 30, 1482-1491.	0.8	48
58	International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, e383-e414.	0.4	47
59	Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2840-H2849.	1.5	46
60	Paracrine Effects of Cell Transplantation: Modifying Ventricular Remodeling in the Failing Heart. Seminars in Thoracic and Cardiovascular Surgery, 2008, 20, 87-93.	0.4	45
61	Bioactive Extracellular Matrix Scaffold Promotes Adaptive Cardiac Remodeling and Repair. JACC Basic To Translational Science, 2017, 2, 450-464.	1.9	43
62	Induction of human aortic myofibroblast-mediated extracellular matrix dysregulation: A potential mechanism of fluoroquinolone-associated aortopathy. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 109-119.e2.	0.4	42
63	Post-Operative Adhesions: A Comprehensive Review of Mechanisms. Biomedicines, 2021, 9, 867.	1.4	42
64	Adhesive-Enhanced Sternal Closure to Improve Postoperative Functional Recovery: A Pilot, Randomized Controlled Trial. Annals of Thoracic Surgery, 2011, 92, 1444-1450.	0.7	41
65	Increased endothelin-1 production in diabetic patients after cardioplegic arrest and reperfusion impairs coronary vascular reactivity: Reversal by means of endothelin antagonism. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1114-1119.	0.4	40
66	Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules, 2021, 11, 1027.	1.8	40
67	Differential impact of mechanical unloading on structural and nonstructural components of the extracellular matrix in advanced human heart failure. Translational Research, 2016, 172, 30-44.	2.2	39
68	Cardiac remodeling and failure. Cardiovascular Pathology, 2005, 14, 109-119.	0.7	38
69	Acellular Extracellular Matrix Bioscaffolds for Cardiac Repair and Regeneration. Frontiers in Cell and Developmental Biology, 2019, 7, 63.	1.8	38
70	Association of Regional Wall Shear Stress and Progressive Ascending Aorta Dilation in Bicuspid Aortic Valve. JACC: Cardiovascular Imaging, 2022, 15, 33-42.	2.3	37
71	Novel cardioprotective effects of pravastatin in human ventricular cardiomyocytes subjected to hypoxia and reoxygenation: beneficial effects of statins independent of endothelial cells1. Journal of Surgical Research, 2004, 119, 66-71.	0.8	35
72	Comparison of Outcomes and Presentation in Men-Versus-Women With Bicuspid Aortic Valves Undergoing Aortic Valve Replacement. American Journal of Cardiology, 2015, 116, 250-255.	0.7	35

#	Article	IF	CITATIONS
73	Off-Pump Coronary Artery Bypass Surgery. Circulation, 2004, 109, 1206-1211.	1.6	34
74	Tissue-Engineered Grafts Matured in the Right Ventricular Outflow Tract. Cell Transplantation, 2004, 13, 169-177.	1.2	33
75	Perioperative evaluation of regional aortic wall shear stress patterns in patients undergoing aortic valve and/or proximal thoracic aortic replacement. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 2277-2286.e2.	0.4	33
76	Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: Effects on left ventricular geometry and function. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1537-1548.	0.4	31
77	Human cardiac fibroblast extracellular matrix remodeling: dual effects of tissue inhibitor of metalloproteinase-2. Cardiovascular Pathology, 2014, 23, 335-343.	0.7	31
78	Pressure drop mapping using 4D flow MRI in patients with bicuspid aortic valve disease: A novel marker of valvular obstruction. Magnetic Resonance Imaging, 2020, 65, 175-182.	1.0	31
79	Combined endothelial and myocardial protection by endothelin antagonism enhances transplant allograft preservation. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 407-415.	0.4	28
80	Determinants of Health-related Quality of Life in Adults with Congenital Heart Disease. Congenital Heart Disease, 2007, 2, 301-313.	0.0	28
81	Cell Therapy Limits Myofibroblast Differentiation and Structural Cardiac Remodeling. Circulation: Heart Failure, 2012, 5, 349-356.	1.6	28
82	Na+ current expression in human atrial myofibroblasts: identity and functional roles. Frontiers in Physiology, 2014, 5, 275.	1.3	28
83	Tetrandrine reverses human cardiac myofibroblast activation and myocardial fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1564-H1574.	1.5	28
84	Effect of aortic aneurysm replacement on outcomes after bicuspid aortic valve surgery: Validation of contemporary guidelines. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 2060-2069.	0.4	27
85	Cell transplantation to improve ventricular function in the failing heart. European Journal of Cardio-thoracic Surgery, 2003, 23, 907-916.	0.6	26
86	Bicuspid aortic valve syndrome: heterogeneous but predictable?. European Heart Journal, 2008, 29, 432-433.	1.0	25
87	International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Annals of Thoracic Surgery, 2021, 112, e203-e235.	0.7	25
88	Human pericardial proteoglycan 4 (lubricin): Implications for postcardiotomy intrathoracic adhesion formation. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1598-1608.e1.	0.4	24
89	Use of Diffusion Tensor Imaging to Predict Myocardial Viability After Warm Global Ischemia: Possible Avenue for Use of Non-beating Donor Hearts. Journal of Heart and Lung Transplantation, 2007, 26, 376-383.	0.3	23
90	Cell-based gene therapy modifies matrix remodeling after a myocardial infarction in tissue inhibitor of matrix metalloproteinase-3–deficient mice. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 471-480.e2.	0.4	23

#	Article	IF	CITATIONS
91	Enhancing Sternal Closure Using Kryptonite Bone Adhesive. Surgical Innovation, 2011, 18, NP8-NP11.	0.4	23
92	Acellular bioscaffolds redirect cardiac fibroblasts and promote functional tissue repair in rodents and humans with myocardial injury. Scientific Reports, 2020, 10, 9459.	1.6	23
93	Statin Use and Aneurysm Risk in Patients With Bicuspid Aortic Valve Disease. Clinical Cardiology, 2016, 39, 41-47.	0.7	22
94	Heparin Augmentation Enhances Bioactive Properties of Acellular Extracellular Matrix Scaffold. Tissue Engineering - Part A, 2018, 24, 128-134.	1.6	22
95	Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair. Frontiers in Cardiovascular Medicine, 2018, 5, 35.	1.1	22
96	The science of BAV aortopathy. Progress in Cardiovascular Diseases, 2020, 63, 465-474.	1.6	22
97	Mind the Gap: Current Challenges and Future State of Heart Failure Care. Canadian Journal of Cardiology, 2017, 33, 1434-1449.	0.8	19
98	Interval changes in aortic peak velocity and wall shear stress in patients with bicuspid aortic valve disease. International Journal of Cardiovascular Imaging, 2019, 35, 1925-1934.	0.7	19
99	Year in review. Current Opinion in Cardiology, 2016, 31, 132-138.	0.8	18
100	Safety and efficacy of prophylactic negative pressure wound therapy following open saphenous vein harvest in cardiac surgery: a feasibility study. Interactive Cardiovascular and Thoracic Surgery, 2016, 24, ivw400.	0.5	18
101	Can statin therapy alter the natural history of bicuspid aortic valves?. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2547-H2549.	1.5	17
102	Bicuspid aortic valve-associated aortopathy. Current Opinion in Cardiology, 2018, 33, 134-139.	0.8	17
103	Tetrahydrobiopterin deficiency exaggerates intimal hyperplasia after vascular injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R299-R304.	0.9	16
104	The molecular fingerprint of bicuspid aortopathy. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1334.	0.4	16
105	Bicuspid aortic valve aortopathy. Current Opinion in Cardiology, 2017, 32, 111-116.	0.8	16
106	Utilizing wall shear stress as a clinical biomarker for bicuspid valve-associated aortopathy. Current Opinion in Cardiology, 2019, 34, 124-131.	0.8	15
107	Impact of age, sex, and global function on normal aortic hemodynamics. Magnetic Resonance in Medicine, 2020, 84, 2088-2102.	1.9	15
108	International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Radiology: Cardiothoracic Imaging, 2021, 3, e200496.	0.9	15

#	Article	IF	CITATIONS
109	Restoration and regeneration of failing myocardium with cell transplantation and tissue engineering. Seminars in Thoracic and Cardiovascular Surgery, 2003, 15, 277-286.	0.4	14
110	Role of Mutation and Pharmacologic Block of Human KCNH2 in Vasculogenesis and Fetal Mortality. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 420-428.	2.1	14
111	Promoting Cardiac Regeneration and Repair Using Acellular Biomaterials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 291.	2.0	14
112	Bicuspid aortic valve disease is associated with abnormal wall shear stress, viscous energy loss, and pressure drop within the ascending thoracic aorta. Medicine (United States), 2021, 100, e26518.	0.4	14
113	Endothelin blockade potentiates endothelial protective effects of ace inhibitors in saphenous veins. Annals of Thoracic Surgery, 2002, 73, 1185-1188.	0.7	12
114	Bicuspid aortopathy and the development of individualized resection strategies. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 2080-2081.	0.4	12
115	Hemodynamic Assessment in Bicuspid Aortic Valve Disease and Aortic Dilation: New Insights From Voxel-By-Voxel Analysis of Reverse Flow, Stasis, and Energetics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 725113.	2.0	11
116	Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics, 2022, 12, 871.	1.3	11
117	Biomechanics in ascending aortic aneurysms correlate with tissue composition and strength. JTCVS Open, 2022, 9, 1-10.	0.2	11
118	An overview of human pericardial space and pericardial fluid. Cardiovascular Pathology, 2021, 53, 107346.	0.7	10
119	Caveolin: a key target for modulating nitric oxide availability in health and disease. Molecular and Cellular Biochemistry, 2003, 247, 101-109.	1.4	9
120	Does Ischemic Preconditioning Afford Clinically Relevant Cardioprotection?. American Journal of Cardiovascular Drugs, 2003, 3, 1-11.	1.0	9
121	Evolution of Precision Medicine and Surgical Strategies for Bicuspid Aortic Valve-Associated Aortopathy. Frontiers in Physiology, 2017, 8, 475.	1.3	9
122	The CorMatrix Corâ,,¢ PATCH for epicardial infarct repair. Future Cardiology, 2021, 17, 1297-1305.	0.5	9
123	Assessing wall stresses in bicuspid aortic valve-associated aortopathy: Forecasting the perfect storm?. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 471-472.	0.4	8
124	Cell transplantation in non-ischemic dilated cardiomyopathy. General Thoracic and Cardiovascular Surgery, 2002, 50, 457-460.	0.4	7
125	Cardiac restoration by cell transplantation. International Journal of Cardiology, 2004, 95, S5-S7.	0.8	7
126	Cardiac progenitor cell sheet regenerates myocardium and renews hope for translation. Cardiovascular Research, 2010, 87, 8-9.	1.8	7

#	Article	IF	CITATIONS
127	The Cost of Frailty in Cardiac Surgery. Canadian Journal of Cardiology, 2017, 33, 959-960.	0.8	7
128	Surgical management of the aorta in BAV patients. Progress in Cardiovascular Diseases, 2020, 63, 475-481.	1.6	7
129	Acellular biomaterial modulates myocardial inflammation and promotes endogenous mechanisms of postinfarct cardiac repair. Journal of Thoracic and Cardiovascular Surgery, 2023, 165, e122-e140.	0.4	7
130	Response to Letter Regarding Article, "Bicuspid Aortic Cusp Fusion Morphology Alters Aortic Three-Dimensional Outflow Patterns, Wall Shear Stress, and Expression of Aortopathyâ€: Circulation, 2014, 130, e171.	1.6	6
131	Aortic Valve Replacement in an EraÂofÂRapid Innovation. Journal of the American College of Cardiology, 2018, 71, 1413-1416.	1.2	6
132	Application of Bioengineered Materials in the Surgical Management of Heart Failure. Frontiers in Cardiovascular Medicine, 2019, 6, 123.	1.1	6
133	Aorta-specific DNA methylation patterns in cell-free DNA from patients with bicuspid aortic valve-associated aortopathy. Clinical Epigenetics, 2021, 13, 147.	1.8	6
134	Lack of Equity in the Cardiology Physician Workforce: AÂNarrative Review and Analysis of the Literature. CJC Open, 2021, 3, S180-S186.	0.7	6
135	Evaluation of a novel sutureless anastomotic connector: From endothelial function to mid-term clinical and angiographic follow-up. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1555-1560.	0.4	5
136	Mechanical and Structural Remodeling of Cardiac Muscle after Aerobic and Resistance Exercise Training in Rats. Medicine and Science in Sports and Exercise, 2021, 53, 1583-1594.	0.2	5
137	Catalyzing capital for Canada's life sciences industry. Journal of Commercial Biotechnology, 2011, 17, 330-348.	0.2	4
138	Adhesive-Enhanced Sternal Closure: Feasibility and Safety of Late Sternal Reentry. Case Reports in Surgery, 2017, 2017, 1-3.	0.2	4
139	Evolving Surgical Approaches to Bicuspid Aortic Valve Associated Aortopathy. Frontiers in Cardiovascular Medicine, 2019, 6, 19.	1.1	4
140	Applications of a Specialty Bicuspid Aortic Valve Program: Clinical Continuity and Translational Collaboration. Journal of Clinical Medicine, 2020, 9, 1354.	1.0	4
141	Aortic valve malformations and pulmonary autograft root dilatation. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1222-1223.	0.4	4
142	Global Aortic Pulse Wave Velocity is Unchanged in Bicuspid Aortopathy With Normal Valve Function but Elevated in Patients With Aortic Valve Stenosis: Insights From a <scp>4D</scp> Flow <scp>MRI</scp> Study of 597 Subjects. Journal of Magnetic Resonance Imaging, 2023, 57, 126-136.	1.9	4
143	Is Concomitant Aortopathy Unique With Bicuspid AorticÂValve Stenosis?. Journal of the American College of Cardiology, 2016, 67, 1797-1799.	1.2	3
144	Real estate of the bicuspid aorta: Location, location, location!. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 1728-1729.	0.4	3

#	Article	IF	CITATIONS
145	Bicuspid aortic valve and the specialty clinic: are your patients at risk?. Cardiology in the Young, 2017, 27, 411-412.	0.4	3
146	Aortic diameter: The beginning of the end of an era. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 513-514.	0.4	3
147	Coronary Bypass Surgery for Diabetes and Multivessel Disease. Journal of the American College of Cardiology, 2018, 72, 2838-2840.	1.2	3
148	Make sternotomy great again. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 2133-2134.	0.4	3
149	Cell transplantation, ventricular remodeling, and the extracellular matrix. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 0584-0585.	0.4	3
150	Cardiac Regeneration with Embryonic Stem Cells: Historic Recapitulation of Heart Transplantation. Stem Cells and Development, 2008, 17, 1021-1022.	1.1	2
151	Bridging to heart transplant with extracorporeal membrane oxygenation: Good or VAD?. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1619-1620.	0.4	2
152	On the â€~cusp' of clinical feasibility: aortic wall shear stress derived non-invasively with 4D flow MRI. Journal of Thoracic Disease, 2019, 11, E96-E97.	0.6	2
153	Minimally invasive cardiac surgery and the importance of qualitative patient-centered metrics to guide innovations. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, e356-e357.	0.4	2
154	Fluoroquinolone-Associated Type A Aortic Dissection in Alpha-1 Anti-Trypsin Deficiency. Annals of Thoracic Surgery, 2020, 110, e489-e491.	0.7	2
155	Summary: international consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. European Journal of Cardio-thoracic Surgery, 2021, 60, 481-496.	0.6	2
156	Ischemic heart disease: Cellular and molecular immune contributions of the pericardium. International Journal of Biochemistry and Cell Biology, 2021, 140, 106076.	1.2	2
157	Commentary: Using exÂvivo modeling to validate technical innovations in cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 404-405.	0.4	1
158	Commentary: Cell therapy goes subcellular. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, e386-e387.	0.4	1
159	Targeting selected extracellular matrix components to attenuate cardiac fibrosis. Annals of Translational Medicine, 2018, 6, S49-S49.	0.7	1
160	Dye-Mediated Photo-Oxidation Biomaterial Fixation: Analysis of Bioinductivity and Mechanical Properties of Bovine Pericardium for Use in Cardiac Surgery. International Journal of Molecular Sciences, 2021, 22, 10768.	1.8	1
161	Invited commentary. Annals of Thoracic Surgery, 2003, 76, 486.	0.7	0

#	Article	IF	CITATIONS
163	Canadian Cardiac Surgeons' Perspectives on Biomedical Innovation. Canadian Journal of Cardiology, 2012, 28, 607-610.	0.8	0
164	Health technology assessments and innovation. Nature Biotechnology, 2013, 31, 970-971.	9.4	0
165	Reply. Journal of the American College of Cardiology, 2016, 67, 735-736.	1.2	0
166	Reply. Journal of the American College of Cardiology, 2016, 67, 1756-1757.	1.2	0
167	Seeing a tree through the forest: Precision medicine tools can enhance donor allocation in heart transplantation. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1591-1592.	0.4	0
168	Precision and targeted therapy in cardiac surgery. Journal of Thoracic Disease, 2018, 10, S3986-S3988.	0.6	0
169	Modify, simplify, apply: Do we need preclinical models for surgical innovation?. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1869-1870.	0.4	0
170	Commentary: Cause or consequence? The influence of mitral regurgitation on post-myocardial infarction structural remodeling is better defined using a new rodent model. Journal of Thoracic and Cardiovascular Surgery, 2019, , .	0.4	0
171	Impact of Aortopathy and Aortic Valve Disease on 3D Blood Flow and Wall Shear Stress in the Thoracic Aorta: As Assessed by 4D Flow MRI. , 2019, , 447-464.		0
172	Minimally invasive cardiac surgery presents challenges for design of randomized clinical trials. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, e133-e134.	0.4	0
173	Commentary: Structural valve degeneration in the era of precision medicine. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1391-1392.	0.4	0
174	Commentary: Blame the sculptors for the heart of stone—Uncovering cellular mechanisms of aortic valve calcification. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1754-1755.	0.4	0
175	Commentary: The mutation matters: Improving precision for surgical management of hereditary aortic syndromes. Journal of Thoracic and Cardiovascular Surgery, 2020, , .	0.4	0
176	Commentary: The return on investment for cardiothoracic surgeon-scientists. Journal of Thoracic and Cardiovascular Surgery, 2020, 162, 1767-1768.	0.4	0
177	Commentary: Transplanting the powerhouse of the cell to enhance cardiopulmonary repair. Journal of Thoracic and Cardiovascular Surgery, 2020, , .	0.4	0
178	Commentary: Fluoroquinolone antibiotics are antiaortic. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e231-e232.	0.4	0
179	Commentary: The promise of precision cardiovascular surgery. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 661-662.	0.4	0
180	Commentary: How to save and improve the lives of families with heritable aortic diseases. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, 49-50.	0.4	0

#	Article	IF	CITATIONS
181	Commentary: Past is Prologue – Leveraging Big Data to Optimize Future Operative Risk Prediction. Seminars in Thoracic and Cardiovascular Surgery, 2021, , .	0.4	0
182	Commentary: The 4AT score—Reducing confusion about delirium diagnosis after cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2021, , .	0.4	0
183	Commentary: Cell therapy for spinal regeneration—implications for recovery after complex aortic surgery. JTCVS Open, 2021, 7, 45-46.	0.2	0
184	An Intact Pericardium Ischemic Rodent Model. Journal of Visualized Experiments, 2021, , .	0.2	0
185	Commentary: Use the force: Gaining mechanistic insights on aortic valve calcification using magnetic twisting cytometry. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, e331-e332.	0.4	0
186	Commentary: Going deep by employing myocardial molecular biology for precision cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2023, 166, 154-155.	0.4	0
187	Extracellular Matrix and Cardiac Disease: Surgical and Scientific Perspectives. , 2015, , 323-346.		0
188	Validating innovations to improve recovery after heart surgery. Annals of Translational Medicine, 2018, 6, S13-S13.	0.7	0
189	Medial Collagen Type and Quantity Influence Mechanical Properties of Aneurysm Wall in Bicuspid Aortic Valve Patients. Frontiers in Mechanical Engineering, 0, 8, .	0.8	0