Mark van Loosdrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7495963/publications.pdf

Version: 2024-02-01

934 papers 82,490 citations

146 h-index

219

235

971 all docs

971 docs citations

times ranked

971

30168 citing authors

g-index

#	Article	IF	CITATIONS
1	Density measurements of aerobic granular sludge. Environmental Technology (United Kingdom), 2023, 44, 1985-1995.	2.2	10
2	Biological removal processes in aerobic granular sludge exposed to diclofenac. Environmental Technology (United Kingdom), 2022, 43, 3295-3308.	2.2	2
3	A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. ISME Journal, 2022, 16, 346-357.	9.8	8
4	Insight on how biopolymers recovered from aerobic granular wastewater sludge can reduce the flammability of synthetic polymers. Science of the Total Environment, 2022, 805, 150434.	8.0	9
5	Short and long term continuous hydroxylamine feeding in a granular sludge partial nitritation reactor. Water Research, 2022, 209, 117945.	11.3	1
6	Pilot-scale magnetic recovery of vivianite from digested sewage sludge. Water Research, 2022, 212, 118131.	11.3	36
7	Intensifying existing urban wastewater. Science, 2022, 375, 377-378.	12.6	66
8	Physiology of anammox adaptation to low temperatures and promising biomarkers: A review. Bioresource Technology, 2022, 349, 126847.	9.6	25
9	From wastewater to resource. One Earth, 2022, 5, 122-125.	6.8	12
10	Ionic strength of the liquid phase of different sludge streams in a wastewater treatment plant. Water Science and Technology, 2022, 85, 1920-1935.	2.5	6
11	Engineering an acetoacetyl-CoA reductase from Cupriavidus necator toward NADH preference under physiological conditions. Scientific Reports, 2022, 12, 3757.	3.3	6
12	Vivianite precipitation for iron recovery from anaerobic groundwater. Water Research, 2022, 217, 118345.	11.3	9
13	Modelling of methane production and emissions. , 2022, , 197-212.		0
14	On the mechanisms for aerobic granulation - model based evaluation. Water Research, 2022, 216, 118365.	11.3	23
15	Efficient formation of vivianite without anaerobic digester: Study in excess activated sludge. Journal of Environmental Chemical Engineering, 2022, 10, 107473.	6.7	9
16	Controlling factors and involved mechanisms on forming alginate like extracellular polymers in flocculent sludge. Chemical Engineering Journal, 2022, 439, 135792.	12.7	13
17	Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations. Science of the Total Environment, 2022, 830, 154715.	8.0	7
18	Sulfated glycosaminoglycan-like polymers are present in an acidophilic biofilm from a sulfidic cave. Science of the Total Environment, 2022, 829, 154472.	8.0	12

#	Article	IF	Citations
19	Catabolism of sialic acids in an environmental microbial community. FEMS Microbiology Ecology, 2022, 98, .	2.7	5
20	Enhancing extraction of alginate like extracellular polymers (ALE) from flocculent sludge by surfactants. Science of the Total Environment, 2022, 837, 155673.	8.0	3
21	Metagenomic profiling and transfer dynamics of antibiotic resistance determinants in a full-scale granular sludge wastewater treatment plant. Water Research, 2022, 219, 118571.	11.3	34
22	Making Waves: A sea change in treating wastewater – Why thermodynamics supports resource recovery and recycling. Water Research, 2022, 218, 118516.	11.3	15
23	On anammox activity at low temperature: Effect of ladderane composition and process conditions. Chemical Engineering Journal, 2022, 445, 136712.	12.7	12
24	Impact of primary sedimentation on granulation and treatment performance of municipal wastewater by aerobic granular sludge process. Journal of Environmental Management, 2022, 315, 115191.	7.8	8
25	Application of data reconciliation to a dynamically operated wastewater treatment process with off-gas measurements. Environmental Science: Water Research and Technology, 2022, 8, 2114-2125.	2.4	1
26	Sustainability tensions and opportunities for aviation biofuel production in Brazil., 2022, , 237-262.		1
27	Quantification of polyhydroxyalkanoate accumulated in waste activated sludge. Water Research, 2022, 221, 118795.	11.3	14
28	Diffusion of soluble organic substrates in aerobic granular sludge: Effect of molecular weight. Water Research X, 2022, 16, 100148.	6.1	3
29	Creating coagulants through the combined use of ash and brine. Science of the Total Environment, 2022, 845, 157344.	8.0	6
30	Free-floating extracellular DNA: Systematic profiling of mobile genetic elements and antibiotic resistance from wastewater. Water Research, 2021, 189, 116592.	11.3	67
31	Simultaneous biodegradability enhancement and high-efficient nitrogen removal in an innovative single stage anaerobic/anoxic/aerobic hybrid airlift bioreactor (HALBR) for composting leachate treatment: Process modeling and optimization. Chemical Engineering Journal, 2021, 407, 127019.	12.7	19
32	Nanocellulose recovery from domestic wastewater. Journal of Cleaner Production, 2021, 280, 124507.	9.3	23
33	Ammonia removal from thermal hydrolysis dewatering liquors via three different deammonification technologies. Science of the Total Environment, 2021, 755, 142684.	8.0	19
34	Enhanced Methane Recovery from Waste-Activated Sludge by Alginate-Degrading Consortia: The Overlooked Role of Alginate in Extracellular Polymeric Substances. Environmental Science and Technology Letters, 2021, 8, 86-91.	8.7	17
35	Annual dynamics of antimicrobials and resistance determinants in flocculent and aerobic granular sludge treatment systems. Water Research, 2021, 190, 116752.	11.3	35
36	Dynamic impact of cellulose and readily biodegradable substrate on oxygen transfer efficiency in sequencing batch reactors. Water Research, 2021, 190, 116724.	11.3	14

#	Article	IF	Citations
37	A hydrophilic and antifouling nanofiltration membrane modified by citric acid functionalized tannic acid (CA-f-TA) nanocomposite for dye removal from biologically treated baker's yeast wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 104963.	6.7	36
38	Hydroxylamine and the nitrogen cycle: A review. Water Research, 2021, 190, 116723.	11.3	108
39	How to measure diffusion coefficients in biofilms: A critical analysis. Biotechnology and Bioengineering, 2021, 118, 1273-1285.	3.3	18
40	An NADH preferring acetoacetyl-CoA reductase is engaged in poly-3-hydroxybutyrate accumulation in Escherichia coli. Journal of Biotechnology, 2021, 325, 207-216.	3.8	9
41	Relieving the inhibition of humic acid on anaerobic digestion of excess sludge by metal ions. Water Research, 2021, 188, 116541.	11.3	52
42	Trehalose as an osmolyte in Candidatus Accumulibacter phosphatis. Applied Microbiology and Biotechnology, 2021, 105, 379-388.	3.6	2
43	Evaluation of a Full-Scale Suspended Sludge Deammonification Technology Coupled with an Hydrocyclone to Treat Thermal Hydrolysis Dewatering Liquors. Processes, 2021, 9, 278.	2.8	9
44	Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands. Desalination, 2021, 500, 114865.	8.2	90
45	Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment. Water Research, 2021, 193, 116905.	11.3	65
46	<scp>OSiD /scp>: opening the conceptual design of biobased processes to a contextâ€sensitive sustainability analysis. Biofuels, Bioproducts and Biorefining, 2021, 15, 961-972.</scp>	3.7	4
47	Simultaneous nitrification and phosphate removal by bioaugmented aerobic granules treating a fluoroorganic compound. Water Science and Technology, 2021, 83, 2404-2413.	2.5	0
48	Biodegradation of organophosphorus pesticides in moving bed biofilm reactors: Analysis of microbial community and biodegradation pathways. Journal of Hazardous Materials, 2021, 408, 124950.	12.4	36
49	Increased extracellular polymeric substances production contributes for the robustness of aerobic granular sludge during long-term intermittent exposure to 2-fluorophenol in saline wastewater. Journal of Water Process Engineering, 2021, 40, 101977.	5.6	18
50	Production of nonulosonic acids in the extracellular polymeric substances of "Candidatus Accumulibacter phosphatisâ€. Applied Microbiology and Biotechnology, 2021, 105, 3327-3338.	3.6	14
51	Formation and ripening of alginate-like exopolymer gel layers during and after membrane filtration. Water Research, 2021, 195, 116959.	11.3	10
52	Assessment of the Impact of Temperature on Biofilm Composition with a Laboratory Heat Exchanger Module. Microorganisms, 2021, 9, 1185.	3.6	9
53	Unravelling the removal mechanisms of bacterial and viral surrogates in aerobic granular sludge systems. Water Research, 2021, 195, 116992.	11.3	8
54	†Blue Route' for combating climate change. National Science Review, 2021, 8, nwab099.	9.5	2

#	Article	IF	Citations
55	Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges. Bioresource Technology, 2021, 327, 124790.	9.6	60
56	Database-independent de novo metaproteomics of complex microbial communities. Cell Systems, 2021, 12, 375-383.e5.	6.2	35
57	Role of air scouring in anaerobic/anoxic tanks providing nitrogen removal by mainstream anammox conversion in a hybrid biofilm/suspended growth fullâ€scale WWTP in China. Water Environment Research, 2021, 93, 2198-2209.	2.7	8
58	Nitrous oxide emission from full-scale municipal aerobic granular sludge. Water Research, 2021, 198, 117159.	11.3	21
59	Efficient cooling tower operation at alkaline pH for the control of Legionella pneumophila and other pathogenic genera. Water Research, 2021, 197, 117047.	11.3	5
60	Vivianite scaling in wastewater treatment plants: Occurrence, formation mechanisms and mitigation solutions. Water Research, 2021, 197, 117045.	11.3	23
61	A new anti-fouling polysulphone nanofiltration membrane blended by amine-functionalized MCM-41 for post treating waste stabilization pond's effluent. Journal of Environmental Management, 2021, 290, 112649.	7.8	22
62	Upgrading residues from wastewater and drinking water treatment plants as low-cost adsorbents to remove extracellular DNA and microorganisms carrying antibiotic resistance genes from treated effluents. Science of the Total Environment, 2021, 778, 146364.	8.0	28
63	Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor. Chemosphere, 2021, 275, 130037.	8.2	6
64	Temperature and Nutrient Limitations Decrease Transfer of Conjugative IncP-1 Plasmid pKJK5 to Wild Escherichia coli Strains. Frontiers in Microbiology, 2021, 12, 656250.	3.5	20
65	An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 2021, 12, 4765.	12.8	248
66	Natural deep eutectic solvents as biofilm structural breakers. Water Research, 2021, 201, 117323.	11.3	20
67	Elemental sulfur as electron donor and/or acceptor: Mechanisms, applications and perspectives for biological water and wastewater treatment. Water Research, 2021, 202, 117373.	11.3	80
68	Potential of off-gas analyses for sequentially operated reactors demonstrated on full-scale aerobic granular sludge technology. Science of the Total Environment, 2021, 787, 147651.	8.0	10
69	Highly Selective Fermentation of Waste-Activated Sludge by Alginate-Degrading Consortia. ACS ES&T Engineering, 2021, 1, 1606-1617.	7.6	10
70	Unaerated feeding alters the fate of dissolved methane during aerobic wastewater treatment. Water Research, 2021, 204, 117619.	11.3	3
71	Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation. Water Research, 2021, 205, 117706.	11.3	42
72	Simultaneous nitrification and denitrification in microbial community-based polyhydroxyalkanoate production. Bioresource Technology, 2021, 337, 125420.	9.6	8

#	Article	IF	Citations
73	Periodic chemical cleaning with urea: disintegration of biofilms and reduction of key biofilm-forming bacteria from reverse osmosis membranes. Water Research X, 2021, 13, 100117.	6.1	8
74	A techno-economic analysis of membrane-based advanced treatment processes for the reuse of municipal wastewater. Journal of Water Reuse and Desalination, 2021, 11, 705-725.	2.3	9
75	Rheological characterisation of alginate-like exopolymer gels crosslinked with calcium. Water Research, 2021, 207, 117835.	11.3	4
76	Identification of Extracellular Key Enzyme and Intracellular Metabolic Pathway in Alginate-Degrading Consortia via an Integrated Metaproteomic/Metagenomic Analysis. Environmental Science & Eamp; Technology, 2021, 55, 16636-16645.	10.0	15
77	Strength characterization of full-scale aerobic granular sludge. Environmental Technology (United) Tj ETQq1 1 0.	784314 rg	gBT/Overlock
78	Elucidating performance failures in use of granular sludge for nutrient removal from domestic wastewater in a warm coastal climate region. Environmental Technology (United Kingdom), 2020, 41, 1896-1911.	2.2	22
79	Biogenic iron oxides for phosphate removal. Environmental Technology (United Kingdom), 2020, 41, 260-266.	2.2	15
80	Sustainable disposal of excess sludge: Incineration without anaerobic digestion. Water Research, 2020, 170, 115298.	11.3	111
81	Aerobic granular sludge contains Hyaluronic acid-like and sulfated glycosaminoglycans-like polymers. Water Research, 2020, 169, 115291.	11.3	58
82	Stress-induced assays for polyphosphate quantification by uncoupling acetic acid uptake and anaerobic phosphorus release. Water Research, 2020, 169, 115228.	11.3	24
83	Sulfide induced phosphate release from iron phosphates and its potential for phosphate recovery. Water Research, 2020, 171, 115389.	11.3	42
84	Impact of metal ions on structural EPS hydrogels from aerobic granular sludge. Biofilm, 2020, 2, 100011.	3.8	35
85	Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge. Water Research, 2020, 170, 115344.	11.3	70
86	Removal of bacterial and viral indicator organisms in full-scale aerobic granular sludge and conventional activated sludge systems. Water Research X, 2020, 6, 100040.	6.1	33
87	Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge. Water Research, 2020, 187, 116402.	11.3	34
88	Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles, 2020, 24, 923-935.	2.3	10
89	A settling model for full-scale aerobic granular sludge. Water Research, 2020, 186, 116135.	11.3	41
90	The role of the external mass transfer resistance in nitrite oxidizing bacteria repression in biofilm-based partial nitritation/anammox reactors. Water Research, 2020, 186, 116348.	11.3	31

#	Article	lF	Citations
91	Hydroxylamine metabolism of Ca. Kuenenia stuttgartiensis. Water Research, 2020, 184, 116188.	11.3	18
92	Heterogeneous diffusion in aerobic granular sludge. Biotechnology and Bioengineering, 2020, 117, 3809-3819.	3 . 3	19
93	Biotechnology for Gas-to-Liquid (GTL) Wastewater Treatment: A Review. Water (Switzerland), 2020, 12, 2126.	2.7	8
94	Revealing the Metabolic Flexibility of " <i>Candidatus</i> Accumulibacter phosphatis―through Redox Cofactor Analysis and Metabolic Network Modeling. Applied and Environmental Microbiology, 2020, 86, .	3.1	24
95	Effect of phosphate availability on biofilm formation in cooling towers. Biofouling, 2020, 36, 800-815.	2.2	9
96	Ammonia removal from mixed dewatering liquors by three different deammonification technologies. Environmental Science: Water Research and Technology, 2020, 6, 3440-3450.	2.4	1
97	Identification and role of microbial species developed in aerobic granular sludge bioreactor for livestock wastewater treatment. IOP Conference Series: Earth and Environmental Science, 2020, 479, 012026.	0.3	1
98	Sialic Acids: An Important Family of Carbohydrates Overlooked in Environmental Biofilms. Applied Sciences (Switzerland), 2020, 10, 7694.	2.5	7
99	\hat{l}^2 -cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Separation and Purification Technology, 2020, 247, 116979.	7.9	30
100	The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories. Sustainability, 2020, 12, 4168.	3.2	17
101	A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes: Role of extracellular polymeric substances (EPS). Journal of Membrane Science, 2020, 609, 118189.	8.2	26
102	Escherichia coli metabolism under short-term repetitive substrate dynamics: adaptation and trade-offs. Microbial Cell Factories, 2020, 19, 116.	4.0	15
103	Variability in the composition of extracellular polymeric substances from a full-scale aerobic granular sludge reactor treating urban wastewater. Journal of Environmental Chemical Engineering, 2020, 8, 104156.	6.7	29
104	The potential and current status of earthen material for low-cost housing in rural India. Construction and Building Materials, 2020, 247, 118615.	7.2	58
105	Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria. Water Research, 2020, 175, 115683.	11.3	59
106	Effect of the co-treatment of synthetic faecal sludge and wastewater in an aerobic granular sludge system. Science of the Total Environment, 2020, 741, 140480.	8.0	11
107	Exploring resource recovery potentials for the aerobic granular sludge process by mass and energy balances – energy, biopolymer and phosphorous recovery from municipal wastewater. Environmental Science: Water Research and Technology, 2020, 6, 2164-2179.	2.4	18
108	Selecting for lactic acid producing and utilising bacteria in anaerobic enrichment cultures. Biotechnology and Bioengineering, 2020, 117, 1281-1293.	3.3	45

#	Article	IF	CITATIONS
109	Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction. Applied Microbiology and Biotechnology, 2020, 104, 3643-3654.	3.6	13
110	"Candidatus Galacturonibacter soehngenii―Shows Acetogenic Catabolism of Galacturonic Acid but Lacks a Canonical Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase Complex. Frontiers in Microbiology, 2020, 11, 63.	3.5	6
111	Tackling the chemical diversity of microbial nonulosonic acids – a universal large-scale survey approach. Chemical Science, 2020, 11, 3074-3080.	7.4	21
112	Biological phosphorus removal in seawater-adapted aerobic granular sludge. Water Research, 2020, 172, 115531.	11.3	36
113	The bottlenecks and causes, and potential solutions for municipal sewage treatment in China. Water Practice and Technology, 2020, 15, 160-169.	2.0	29
114	A critical review of resource recovery from municipal wastewater treatment plants – market supply potentials, technologies and bottlenecks. Environmental Science: Water Research and Technology, 2020, 6, 877-910.	2.4	228
115	Bacterial community dynamics and disinfection impact in cooling water systems. Water Research, 2020, 172, 115505.	11.3	34
116	Decorating the Anammox House: Sialic Acids and Sulfated Glycosaminoglycans in the Extracellular Polymeric Substances of Anammox Granular Sludge. Environmental Science & Environmental Science & 2020, 54, 5218-5226.	10.0	45
117	Anticipating Xenogenic Pollution at the Source: Impact of Sterilizations on DNA Release From Microbial Cultures. Frontiers in Bioengineering and Biotechnology, 2020, 8, 171.	4.1	11
118	Waste or Gold? Bioelectrochemical Resource Recovery in Source-Separated Urine. Trends in Biotechnology, 2020, 38, 990-1006.	9.3	35
119	When and why do gradients of the gas phase composition and pressure affect liquid-gas transfer?. Water Research, 2020, 178, 115844.	11.3	14
120	Isolation and Identification of Organics-Degrading Bacteria From Gas-to-Liquid Process Water. Frontiers in Bioengineering and Biotechnology, 2020, 8, 603305.	4.1	8
121	Microbial Identification and Extracellular Polymeric Substances Characterization of Aerobic Granules Developed in Treating Rubber Processing Wastewater. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 257-286.	0.5	3
122	Full-scale increased iron dosage to stimulate the formation of vivianite and its recovery from digested sewage sludge. Water Research, 2020, 182, 115911.	11.3	68
123	Treatment of sidestream dewatering liquors from thermally hydrolised and anaerobically digested biosolids. Water Practice and Technology, 2020, 15, 142-150.	2.0	10
124	NADH-driven poly-3-hydroxybutyrate accumulation in Escherichia coli: Data from enzymatic assays and oxygen-limited continuous cultures. Data in Brief, 2020, 33, 106588.	1.0	2
125	Granulation and Biodegradation by Microbial Species in Granular Sequencing Batch Reactor for Soy Sauce Wastewater Treatment. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 287-308.	0.5	3
126	Effect of Iron on Phosphate Recovery from Sewage Sludge. , 2019, , 303-326.		8

#	Article	IF	Citations
127	Solubilization and characterization of extracellular proteins from anammox granular sludge. Water Research, 2019, 164, 114952.	11.3	70
128	The impact of mixtures of xylose and glucose on the microbial diversity and fermentative metabolism of sequencing-batch or continuous enrichment cultures. FEMS Microbiology Ecology, 2019, 95, .	2.7	5
129	Recovery of high-value and scarce resources from biological wastewater treatment: Sulfated polysaccharides. Water Research, 2019, 163, 114889.	11.3	36
130	Coupling of sulfur(thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater. Water Research, 2019, 163, 114854.	11.3	68
131	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Emp; Technology, 2019, 53, 8479-8481.	10.0	29
132	Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens. Water Research, 2019, 163, 114892.	11.3	36
133	The full energy cost of avoiding CO2: A clean-energy booking provision for a vigorous energy transition. Journal of Cleaner Production, 2019, 237, 117820.	9.3	5
134	Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Water Research, 2019, 166, 115038.	11.3	49
135	Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor. Biochemical Engineering Journal, 2019, 152, 107356.	3.6	12
136	Pilot-Scale Assessment of Urea as a Chemical Cleaning Agent for Biofouling Control in Spiral-Wound Reverse Osmosis Membrane Elements. Membranes, 2019, 9, 117.	3.0	11
137	Electrochemical pretreatment for stabilization of waste activated sludge: Simultaneously enhancing dewaterability, inactivating pathogens and mitigating hydrogen sulfide. Water Research, 2019, 166, 115035.	11.3	57
138	Dynamics of humic substance composition during anaerobic digestion of excess activated sludge. International Biodeterioration and Biodegradation, 2019, 145, 104771.	3.9	32
139	The leakage of sewer systems and the impact on the â€ [~] black and odorous water bodiesâ€ [™] and WWTPs in China. Water Science and Technology, 2019, 79, 334-341.	2.5	37
140	Environmental impacts of resource recovery from wastewater treatment plants. Water Research, 2019, 160, 268-277.	11.3	112
141	Adaptation of semi-continuous anaerobic sludge digestion to humic acids. Water Research, 2019, 161, 329-334.	11.3	47
142	Metabolism of sucrose in a non-fermentative Escherichia coli under oxygen limitation. Applied Microbiology and Biotechnology, 2019, 103, 6245-6256.	3.6	6
143	Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: A cross-sectional study. Water Research, 2019, 161, 319-328.	11.3	131
144	"Candidatus Accumulibacter delftensis― A clade IC novel polyphosphate-accumulating organism without denitrifying activity on nitrate. Water Research, 2019, 161, 136-151.	11.3	74

#	Article	lF	CITATIONS
145	Energy recovery from wastewater: Heat over organics. Water Research, 2019, 161, 74-77.	11.3	124
146	Importance of Species Sorting and Immigration on the Bacterial Assembly of Different-Sized Aggregates in a Full-Scale Aerobic Granular Sludge Plant. Environmental Science & E	10.0	93
147	Magnetic separation and characterization of vivianite from digested sewage sludge. Separation and Purification Technology, 2019, 224, 564-579.	7.9	71
148	NanoSIMS reveals unusual enrichment of acetate and propionate by an anammox consortium dominated by Jettenia asiatica. Water Research, 2019, 159, 223-232.	11.3	37
149	A Case Study on Technical and Social Aspects of Earth Houses in Rural India. Springer Transactions in Civil and Environmental Engineering, 2019 , , $105-115$.	0.4	3
150	Fe(III) reduction and vivianite formation in activated sludge. Separation and Purification Technology, 2019, 220, 126-135.	7.9	47
151	Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Research X, 2019, 4, 100029.	6.1	210
152	Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS). Water Research, 2019, 157, 201-208.	11.3	192
153	Biofilm compressibility in ultrafiltration: A relation between biofilm morphology, mechanics and hydraulic resistance. Water Research, 2019, 157, 335-345.	11.3	30
154	Effect of Lactate on the Microbial Community and Process Performance of an EBPR System. Frontiers in Microbiology, 2019, 10, 125.	3.5	24
155	Resource recovery and wastewater treatment modelling. Environmental Science: Water Research and Technology, 2019, 5, 631-642.	2.4	57
156	Reply to â€~Evolutionary placement of Methanonatronarchaeia'. Nature Microbiology, 2019, 4, 560-561.	13.3	7
157	Sialic acids in the extracellular polymeric substances of seawater-adapted aerobic granular sludge. Water Research, 2019, 155, 343-351.	11.3	41
158	Denitrification as an N2O sink. Water Research, 2019, 151, 381-387.	11.3	101
159	Effect of humic acids on batch anaerobic digestion of excess sludge. Water Research, 2019, 155, 431-443.	11.3	149
160	Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 2019, 152, 21-37.	11.3	1,069
161	Recent advances in dissimilatory sulfate reduction: From metabolic study to application. Water Research, 2019, 150, 162-181.	11.3	115
162	Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors - A review. Water Research, 2019, 149, 322-341.	11.3	90

#	Article	IF	Citations
163	Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability. Water Research, 2019, 150, 1-11.	11.3	22
164	Stratification of nitrifier guilds in granular sludge in relation to nitritation. Water Research, 2019, 148, 479-491.	11.3	28
165	The future of WRRF modelling – outlook and challenges. Water Science and Technology, 2019, 79, 3-14.	2.5	31
166	Diversity and metabolism of xylose and glucose fermenting microbial communities in sequencing batch or continuous culturing. FEMS Microbiology Ecology, 2019, 95, .	2.7	23
167	Extracellular polymeric substances of biofilms: Suffering from an identity crisis. Water Research, 2019, 151, 1-7.	11.3	228
168	Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 2019, 358, 160-169.	12.7	184
169	Towards mainstream anammox: lessons learned from pilot-scale research at WWTP Dokhaven. Environmental Technology (United Kingdom), 2019, 40, 1721-1733.	2.2	64
170	A Novel D-Galacturonate Fermentation Pathway in Lactobacillus suebicus Links Initial Reactions of the Galacturonate-Isomerase Route With the Phosphoketolase Pathway. Frontiers in Microbiology, 2019, 10, 3027.	3.5	14
171	Application of monochloramine for wastewater reuse: Effect on biostability during transport and biofouling in RO membranes. Journal of Membrane Science, 2018, 551, 243-253.	8.2	26
172	Growth yield and selection of <i>nosZ</i> clade II types in a continuous enrichment culture of N ₂ O respiring bacteria. Environmental Microbiology Reports, 2018, 10, 239-244.	2.4	27
173	Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere, 2018, 201, 25-31.	8.2	51
174	Glycosylated amyloidâ€ike proteins in the structural extracellular polymers of aerobic granular sludge enriched with ammoniumâ€oxidizing bacteria. MicrobiologyOpen, 2018, 7, e00616.	3.0	53
175	Review on strategies for biofouling mitigation in spiral wound membrane systems. Desalination, 2018, 434, 189-197.	8.2	88
176	Hygienic water production in an innovative air lift bioreactor followed by high antifouling ultrafiltration membranes modified by layer-by-layer assembly. Journal of Cleaner Production, 2018, 182, 27-37.	9.3	20
177	A framework for good biofilm reactor modeling practice (GBRMP). Water Science and Technology, 2018, 77, 1149-1164.	2.5	32
178	Effective role of medium supplementation in microalgal lipid accumulation. Biotechnology and Bioengineering, 2018, 115, 1152-1160.	3.3	19
179	Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. ISME Journal, 2018, 12, 1142-1153.	9.8	72
180	Influence of carbon to nitrogen ratio on nitrous oxide emission in an Integrated Fixed Film Activated Sludge Membrane BioReactor plant. Journal of Cleaner Production, 2018, 176, 1078-1090.	9.3	38

#	Article	IF	CITATIONS
181	Characterization of the bacterial community in shower water before and after chlorination. Journal of Water and Health, 2018, 16, 233-243.	2.6	5
182	Exploring microbial N ₂ O reduction: a continuous enrichment in nitrogen free medium. Environmental Microbiology Reports, 2018, 10, 102-107.	2.4	11
183	Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques. Water Research, 2018, 140, 387-402.	11.3	38
184	Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review. Renewable and Sustainable Energy Reviews, 2018, 89, 16-26.	16.4	171
185	A sustainability-based evaluation of membrane bioreactors over conventional activated sludge processes. Journal of Environmental Chemical Engineering, 2018, 6, 2597-2605.	6.7	43
186	Evaluating the process performance and potential of a high-rate single airlift bioreactor for simultaneous carbon and nitrogen removal through coupling different pathways from a nitrogen-rich wastewater. Bioresource Technology, 2018, 260, 44-52.	9.6	16
187	Deterioration of the anammox process at decreasing temperatures and long SRTs. Environmental Technology (United Kingdom), 2018, 39, 658-668.	2.2	46
188	Importance of hydroxylamine in abiotic N2O production during transient anoxia in planktonic axenic Nitrosomonas cultures. Chemical Engineering Journal, 2018, 335, 756-762.	12.7	23
189	Sludge reduction by ozone: Insights and modeling of the dose-response effects. Journal of Environmental Management, 2018, 206, 103-112.	7.8	27
190	Enrichment of PHA-producing bacteria under continuous substrate supply. New Biotechnology, 2018, 41, 55-61.	4.4	34
191	Stability of aerobic granules during long-term bioreactor operation. Biotechnology Advances, 2018, 36, 228-246.	11.7	218
192	Impact of Distribution and Network Flushing on the Drinking Water Microbiome. Frontiers in Microbiology, 2018, 9, 2205.	3.5	35
193	Controlling effluent suspended solids in the aerobic granular sludge process. Water Research, 2018, 147, 50-59.	11.3	49
194	Greenhouse gas emissions from membrane bioreactors: analysis of a two-year survey on different MBR configurations. Water Science and Technology, 2018, 78, 896-903.	2.5	7
195	Enhanced biofilm solubilization by urea in reverse osmosis membrane systems. Water Research X, 2018, 1, 100004.	6.1	21
196	Identification of Glycoproteins Isolated from Extracellular Polymeric Substances of Full-Scale Anammox Granular Sludge. Environmental Science & Enviro	10.0	102
197	The influence of dissolved oxygen on partial nitritation/anammox performance and microbial community of the 200,000 m3/d activated sludge process at the Changi water reclamation plant (2011) Tj ETQq1	2.0 .7843	1 4 7rgBT /0\
198	Modelling aerobic granular sludge reactors through apparent half-saturation coefficients. Water Research, 2018, 146, 134-145.	11.3	42

#	Article	IF	CITATIONS
199	O2 versus N2O respiration in a continuous microbial enrichment. Applied Microbiology and Biotechnology, 2018, 102, 8943-8950.	3.6	21
200	Sulfate reducing bacteria applied to domestic wastewater. Water Practice and Technology, 2018, 13, 542-554.	2.0	14
201	Experimental design for evaluating WWTP data by linear mass balances. Water Research, 2018, 142, 415-425.	11.3	16
202	Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. Water Research, 2018, 143, 399-415.	11.3	178
203	Galacturonate Metabolism in Anaerobic Chemostat Enrichment Cultures: Combined Fermentation and Acetogenesis by the Dominant sp. nov. "Candidatus Galacturonibacter soehngenii― Applied and Environmental Microbiology, 2018, 84, .	3.1	16
204	Effect of Salt on the Metabolism of †Candidatus Accumulibacter†Clade I and II. Frontiers in Microbiology, 2018, 9, 479.	3.5	10
205	Incorporating the influent cellulose fraction in activated sludge modelling. Water Research, 2018, 144, 104-111.	11.3	18
206	Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Research, 2018, 144, 312-321.	11.3	186
207	Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: A numerical and experimental study. Water Research, 2018, 145, 375-387.	11.3	41
208	Pilot-Scale Polyhydroxyalkanoate Production from Paper Mill Wastewater: Process Characteristics and Identification of Bottlenecks for Full-Scale Implementation. Journal of Environmental Engineering, ASCE, 2018, 144, .	1.4	41
209	Understanding and improving the reusability of phosphate adsorbents for wastewater effluent polishing. Water Research, 2018, 145, 365-374.	11.3	49
210	Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2199-2208.	1.7	78
211	Mapping Cellulose Content and Degradability in Water Resource Recovery Facilities: European and North-American Case Studies. Proceedings of the Water Environment Federation, 2018, 2018, 98-105.	0.0	0
212	Effects of F/M ratio and Feast-Famine Condition on NO2 Accumulation During Denitrification. Proceedings of the Water Environment Federation, 2018, 2018, 4683-4694.	0.0	0
213	Phosphorus Recovery – A Voyage From Sewage Sludge To Johannes Vermeer. , 2018, , .		0
214	Discovery and metagenomic analysis of an anammox bacterial enrichment related to Candidatus "Brocadia caroliniensis―in a full-scale glycerol-fed nitritation-denitritation separate centrate treatment process. Water Research, 2017, 111, 265-273.	11.3	122
215	From biofilm ecology to reactors: a focused review. Water Science and Technology, 2017, 75, 1753-1760.	2.5	79
216	Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Applied Microbiology and Biotechnology, 2017, 101, 1365-1383.	3 . 6	584

#	Article	lF	CITATIONS
217	Batch influences of exogenous hydrogen on both acidogenesis and methanogenesis of excess sludge. Chemical Engineering Journal, 2017, 317, 544-550.	12.7	21
218	Nitrous oxide emission in a University of Cape Town membrane bioreactor: The effect of carbon to nitrogen ratio. Journal of Cleaner Production, 2017, 149, 180-190.	9.3	28
219	Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment. Bioresource Technology, 2017, 233, 363-372.	9.6	113
220	Enrichment and characterization of a psychrophilic †Candidatus Accumulibacter phosphatis†culture. International Biodeterioration and Biodegradation, 2017, 124, 267-275.	3.9	6
221	Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization. Water Research, 2017, 119, 304-311.	11.3	35
222	Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. Water Research, 2017, 120, 156-164.	11.3	160
223	Improving the accuracy of granular sludge and biofilm reactor simulations in Aquasim through artificial diffusion. Biotechnology and Bioengineering, 2017, 114, 2131-2136.	3.3	8
224	Role of nitrite in the competition between denitrification and DNRA in a chemostat enrichment culture. AMB Express, 2017, 7, 91.	3.0	43
225	Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – Importance of mesopores. Chemical Engineering Journal, 2017, 326, 231-239.	12.7	93
226	Sulfide effects on the anaerobic metabolism of polyphosphate-accumulating organisms. Chemical Engineering Journal, 2017, 326, 68-77.	12.7	25
227	Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiology, 2017, 2, 17081.	13.3	213
228	The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp Water Research, 2017, 122, 148-158.	11.3	76
229	Analysing the mechanisms of sludge digestion enhanced by iron. Water Research, 2017, 117, 58-67.	11.3	135
230	Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis. Water Research, 2017, 116, 53-64.	11.3	92
231	Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Water Research, 2017, 110, 281-287.	11.3	40
232	The occurrence of enhanced biological phosphorus removal in a 200,000 m3/day partial nitration and Anammox activated sludge process at the Changi water reclamation plant, Singapore. Water Science and Technology, 2017, 75, 741-751.	2.5	42
233	Eukaryotic community diversity and spatial variation during drinking water production (by seawater) Tj ETQq1 Technology, 2017, 3, 92-105.	1 0.784314 ı 2.4	rgBT /Overlo
234	Impact of phosphate limitation on PHA production in a feast-famine process. Water Research, 2017, 126, 472-480.	11.3	40

#	Article	IF	CITATIONS
235	Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production. Water Research, 2017, 125, 11-22.	11.3	61
236	Effects of operational models (batch, continuous and CFID modes) on the performance of a single A2O airlift bioreactor for treatment of milk processing wastewater. Chemical Engineering Research and Design, 2017, 125, 471-482.	5 . 6	9
237	Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge. Water Research, 2017, 124, 702-712.	11.3	60
238	Effects of electron acceptors on sulphate reduction activity in activated sludge processes. Applied Microbiology and Biotechnology, 2017, 101, 6229-6240.	3.6	22
239	Effect of temperature on N2O emissions from a highly enriched nitrifying granular sludge performing partial nitritation of a low-strength wastewater. Chemosphere, 2017, 185, 336-343.	8.2	33
240	Dynamic modeling of nutrient removal by a MBR operated at elevated temperatures. Water Research, 2017, 123, 420-428.	11.3	16
241	Sulphide effects on the physiology of Candidatus Accumulibacter phosphatis type I. Applied Microbiology and Biotechnology, 2017, 101, 1661-1672.	3.6	21
242	Extracting DNA from ocean microplastics: a method comparison study. Analytical Methods, 2017, 9, 1521-1526.	2.7	46
243	Aerobic granular biomass technology: advancements in design, applications and further developments. Water Practice and Technology, 2017, 12, 987-996.	2.0	68
244	Microscale Quantitative Analysis of Polyhydroxybutyrate in Prokaryotes Using IDMS. Metabolites, 2017, 7, 19.	2.9	4
245	Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria. Frontiers in Microbiology, 2017, 8, 1684.	3.5	63
246	Aerobic Granular Sludge. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 231-263.	0.4	2
247	Greenhouse Gas Emissions from Membrane Bioreactors. Lecture Notes in Civil Engineering, 2017, , 385-391.	0.4	0
248	Experimental Methods in Wastewater Treatment. Water Intelligence Online, 2016, 15, 9781780404752-9781780404752.	0.3	80
249	Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Frontiers in Microbiology, 2016, 7, 45.	3 . 5	287
250	DNRA and Denitrification Coexist over a Broad Range of Acetate/N-NO3â^ Ratios, in a Chemostat Enrichment Culture. Frontiers in Microbiology, 2016, 7, 1842.	3 . 5	97
251	Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System. PLoS ONE, 2016, 11, e0164445.	2.5	68
252	Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor. Water Science and Technology, 2016, 74, 48-56.	2.5	65

#	Article	IF	Citations
253	Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates. Chemical Engineering Journal, 2016, 304, 953-961.	12.7	65
254	From waste to resource. New Biotechnology, 2016, 33, S30.	4.4	0
255	Aerobic Granular Biomass Technology: recent performance data, lessons learnt and retrofitting conventional treatment infrastructure. Proceedings of the Water Environment Federation, 2016, 2016, 1913-1923.	0.0	6
256	Impact of cell cluster size on apparent half-saturation coefficients for oxygen in nitrifying sludge and biofilms. Water Research, 2016, 106, 371-382.	11.3	88
257	Sustainable Application of a Novel Water Cycle Using Seawater for Toilet Flushing. Engineering, 2016, 2, 460-469.	6.7	27
258	A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems. Water Science and Technology: Water Supply, 2016, 16, 865-880.	2.1	42
259	Comparison of bacterial communities of conventional and A-stage activated sludge systems. Scientific Reports, 2016, 6, 18786.	3.3	79
260	Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI®) process in saline sewage treatment. Water Research, 2016, 100, 496-507.	11.3	142
261	A simple model to describe the performance of highly-loaded aerobic COD removal reactors. Biochemical Engineering Journal, 2016, 112, 94-102.	3.6	33
262	Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems. Journal of Membrane Science, 2016, 520, 964-971.	8.2	17
263	Nitrogen removal by ANAMMOX and simultaneous nitrification–denitrification (SND) processes in a novel single airlift bioreactor. RSC Advances, 2016, 6, 74367-74371.	3.6	15
264	Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water Research, 2016, 104, 449-460.	11.3	154
265	Non-Linear Data Reconciliation for a Partial Nitritation (SHARON) Reactor. IFAC-PapersOnLine, 2016, 49, 1139-1144.	0.9	3
266	Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor. Scientific Reports, 2016, 6, 28327.	3.3	46
267	Denitrification of nitrate and nitrite by  Candidatus Accumulibacter phosphatis' clade IC. Water Research, 2016, 105, 97-109.	11.3	46
268	Prevalence of â€~Candidatus Accumulibacter phosphatis' type II under phosphate limiting conditions. AMB Express, 2016, 6, 44.	3.0	34
269	Effect of water temperature on biofouling development in reverse osmosis membrane systems. Water Research, 2016, 103, 149-159.	11.3	58
270	Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions. Environmental Microbiology, 2016, 18, 3189-3202.	3.8	61

#	Article	IF	Citations
271	Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge. Water Research, 2016, 106, 518-530.	11.3	155
272	Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environmental Science and Pollution Research, 2016, 23, 25501-25511.	5. 3	80
273	Extraction of Structural Extracellular Polymeric Substances from Aerobic Granular Sludge. Journal of Visualized Experiments, 2016, , .	0.3	63
274	Limitation of syntrophic coculture growth by the acetogen. Biotechnology and Bioengineering, 2016, 113, 560-567.	3.3	16
275	Combining the enrichment and accumulation step in non-axenic PHA production: Cultivation of Plasticicumulans acidivorans at high volume exchange ratios. Journal of Biotechnology, 2016, 231, 260-267.	3.8	20
276	Full-Scale Highly-Loaded Wastewater Treatment Processes (A-Stage) to Increase Energy Production from Wastewater: Performance and Design Guidelines. Environmental Engineering Science, 2016, 33, 571-577.	1.6	51
277	Survival of the fastest: Selective removal of the side population for enhanced PHA production in a mixed substrate enrichment. Bioresource Technology, 2016, 216, 1022-1029.	9.6	33
278	High rate simultaneous nutrients removal in a single air lift bioreactor with continuous feed and intermittent discharge regime: Process optimization and effect of feed characteristics. Chemical Engineering Journal, 2016, 301, 200-209.	12.7	25
279	Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass. Water Research, 2016, 89, 282-292.	11.3	52
280	Kinetics of CaCO 3 precipitation in an anaerobic digestion process integrated with silicate minerals. Ecological Engineering, 2016, 86, 105-112.	3.6	13
281	Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during nitritation of reject water. Chemical Engineering Journal, 2016, 287, 720-726.	12.7	57
282	Adaptation of Sulfate-Reducing Bacteria to Sulfide Exposure. Environmental Engineering Science, 2016, 33, 242-249.	1.6	7
283	PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix. Water Research, 2016, 96, 74-83.	11.3	82
284	A novel continuous feed and intermittent discharge airlift bioreactor (CFIDAB) for enhanced simultaneous removal of carbon and nutrients from soft drink industrial wastewater. Chemical Engineering Journal, 2016, 292, 13-27.	12.7	29
285	Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production. Water Research, 2016, 94, 62-72.	11.3	86
286	Distribution and microbial community structure analysis of a single-stage partial nitritation/anammox granular sludge bioreactor operating at low temperature. Environmental Technology (United Kingdom), 2016, 37, 2281-2291.	2.2	28
287	Haloalkaline Bioconversions for Methane Production from Microalgae Grown on Sunlight. Trends in Biotechnology, 2016, 34, 450-457.	9.3	13
288	Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Water Research, 2016, 91, 55-67.	11.3	101

#	Article	IF	Citations
289	Optimal WWTP process selection for treatment of domestic wastewater – A realistic full-scale retrofitting study. Chemical Engineering Journal, 2016, 286, 447-458.	12.7	40
290	Analysing the effects of the aeration pattern and residual ammonium concentration in a partial nitritation-anammox process. Environmental Technology (United Kingdom), 2016, 37, 694-702.	2.2	52
291	Influence of silicate on enrichment of highly productive microalgae from a mixed culture. Journal of Applied Phycology, 2016, 28, 1453-1457.	2.8	9
292	Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities. Applied Microbiology and Biotechnology, 2016, 100, 915-925.	3.6	23
293	Identifying N 2 O formation and emissions from a full-scale partial nitritation reactor. Water Research, 2016, 88, 575-585.	11.3	43
294	Metabolic Response of "Candidatus Accumulibacter Phosphatis―Clade II C to Changes in Influent P/C Ratio. Frontiers in Microbiology, 2016, 7, 2121.	3.5	34
295	Cellulose: a key polymer for a greener, healthier, and bio-based future. Biofuel Research Journal, 2016, 3, 482-482.	13.3	14
296	Twenty-five years of ASM1: past, present and future of wastewater treatment modelling. Journal of Hydroinformatics, 2015, 17, 697-718.	2.4	47
297	Applications of Activated Sludge Models. , 2015, , .		13
298	Evaluation of sampling strategies for estimating ammonia emission factors for pig fattening facilities. Biosystems Engineering, 2015, 140, 79-90.	4.3	7
299	Highâ€rate volatile fatty acid (VFA) production by a granular sludge process at low pH. Biotechnology and Bioengineering, 2015, 112, 2248-2255.	3.3	66
300	Modeling the competition between PHAâ€producing and nonâ€PHAâ€producing bacteria in feastâ€famine SBR and staged CSTR systems. Biotechnology and Bioengineering, 2015, 112, 2475-2484.	3.3	25
301	454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature. BioMed Research International, 2015, 2015, 1-12.	1.9	14
302	Combined biofouling and scaling in membrane feed channels: a new modeling approach. Biofouling, 2015, 31, 83-100.	2.2	28
303	Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai,) Tj ETQq $1\ 1\ 0.784$	4314 rgBT 2.7	 Overlock
304	Tracking the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors operated at different COD/N ratios. Bioresource Technology, 2015, 192, 131-141.	9.6	39
305	Faster through training: The anammox case. Water Research, 2015, 81, 261-268.	11.3	177
306	Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment. Water Research, 2015, 80, 90-98.	11.3	27

#	Article	IF	CITATIONS
307	Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate. Microbial Biotechnology, 2015, 8, 853-864.	4.2	24
308	Ecology-based selective environments as solution to contamination in microalgal cultivation. Current Opinion in Biotechnology, 2015, 33, 46-51.	6.6	51
309	Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor. Journal of Hazardous Materials, 2015, 287, 93-101.	12.4	49
310	Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Research, 2015, 74, 180-190.	11.3	109
311	Microbial community analysis of a full-scale DEMON bioreactor. Bioprocess and Biosystems Engineering, 2015, 38, 499-508.	3.4	49
312	Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World Journal of Microbiology and Biotechnology, 2015, 31, 507-516.	3.6	22
313	Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms. Applied Microbiology and Biotechnology, 2015, 99, 3659-3672.	3.6	25
314	Starch productivity in cyclically operated photobioreactors with marine microalgaeâ€"effect of ammonium addition regime and volume exchange ratio. Journal of Applied Phycology, 2015, 27, 1121-1126.	2.8	11
315	Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material. Sustainable Materials and Technologies, 2015, 4, 24-29.	3.3	53
316	Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake. Water Research, 2015, 83, 354-366.	11.3	107
317	Full scale performance of the aerobic granular sludge process for sewage treatment. Water Research, 2015, 84, 207-217.	11.3	548
318	Long-Term Effect of Seawater on Sulfate Reduction in Wastewater Treatment. Environmental Engineering Science, 2015, 32, 622-630.	1.6	15
319	Seasonal and diurnal variability of N 2 O emissions from a full-scale municipal wastewater treatment plant. Science of the Total Environment, 2015, 536, 1-11.	8.0	112
320	Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor. Water Research, 2015, 84, 8-17.	11.3	34
321	Short-Range Guiding Can Result in the Formation of Circular Aggregates in Myxobacteria Populations. PLoS Computational Biology, 2015, 11, e1004213.	3.2	14
322	Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes. Water Research, 2015, 76, 181-186.	11.3	27
323	Enrichment of DNRA bacteria in a continuous culture. ISME Journal, 2015, 9, 2153-2161.	9.8	148
324	Novel method for online monitoring of dissolved N ₂ O concentrations through a gas stripping device. Environmental Technology (United Kingdom), 2015, 36, 1680-1690.	2.2	20

#	Article	IF	Citations
325	Impact of the hydrogen partial pressure on lactate degradation in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. Applied Microbiology and Biotechnology, 2015, 99, 3599-3608.	3.6	13
326	Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge. Applied Microbiology and Biotechnology, 2015, 99, 5257-5268.	3.6	141
327	Archaeal populations in full-scale autotrophic nitrogen removal bioreactors operated with different technologies: CANON, DEMON and partial nitritation/anammox. Chemical Engineering Journal, 2015, 277, 194-201.	12.7	30
328	The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environmental Science & Environmental Science	10.0	383
329	Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 \hat{A}° C) mixed culture fermentation. Applied Energy, 2015, 148, 326-333.	10.1	38
330	Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures. Biotechnology for Biofuels, 2015, 8, 39.	6.2	14
331	Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World Journal of Microbiology and Biotechnology, 2015, 31, 1675-1681.	3.6	41
332	Effects of Chemical Oxygen Demand, Nutrients and Salinity on Sulfate-Reducing Bacteria. Environmental Engineering Science, 2015, 32, 858-864.	1.6	20
333	Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions. Biotechnology Progress, 2015, 31, 1464-1472.	2.6	64
334	Anaerobic digestion without biogas?. Reviews in Environmental Science and Biotechnology, 2015, 14, 787-801.	8.1	265
335	pH control in biological systems using calcium carbonate. Biotechnology and Bioengineering, 2015, 112, 905-913.	3.3	19
336	Bacterial community structure of a labâ€scale anammox membrane bioreactor. Biotechnology Progress, 2015, 31, 186-193.	2.6	40
337	Modeling the nutrient removal process in aerobic granular sludge system by coupling the reactor―and granuleâ€scale models. Biotechnology and Bioengineering, 2015, 112, 53-64.	3.3	30
338	Effect of temperature change on anammox activity. Biotechnology and Bioengineering, 2015, 112, 98-103.	3.3	163
339	A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria. Bioelectrochemistry, 2015, 102, 10-20.	4.6	10
340	Effect of aeration regime on N2O emission from partial nitritation-anammox in a full-scale granular sludge reactor. Water Research, 2015, 68, 793-803.	11.3	114
341	Pilot-scale evaluation of anammox-based mainstream nitrogen removal from municipal wastewater. Environmental Technology (United Kingdom), 2015, 36, 1167-1177.	2.2	241
342	Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3739-3745.	1.7	60

#	Article	IF	Citations
343	Aerobic Granular Biomass Technology: further innovation, system development and design optimisation. Proceedings of the Water Environment Federation, 2015, 2015, 1897-1917.	0.0	5
344	How far can genetic signatures be used to anticipate and trigger the behavior of environmental biotechnology systems in the water engineering domain?. Proceedings of the Water Environment Federation, 2015, 2015, 6170-6170.	0.0	1
345	Plasticicumulans lactativorans sp. nov., a polyhydroxybutyrate-accumulating gammaproteobacterium from a sequencing-batch bioreactor fed with lactate. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 33-38.	1.7	19
346	Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs. Water Research, 2014, 66, 308-319.	11.3	32
347	Identification of key factors in Accelerated Low Water Corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Biofouling, 2014, 30, 281-297.	2.2	37
348	Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study. Water Research, 2014, 66, 208-218.	11.3	167
349	Influence of acetate and propionate on sulphate-reducing bacteria activity. Journal of Applied Microbiology, 2014, 117, 1839-1847.	3.1	21
350	Modeling phototrophic biofilms in a plug-flow reactor. Water Science and Technology, 2014, 70, 1261-1270.	2.5	15
351	Spacer geometry and particle deposition in spiral wound membrane feed channels. Water Research, 2014, 64, 160-176.	11.3	90
352	Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study. AMB Express, 2014 , 4 , 1 .	3.0	90
353	Numerical Modelling of Tooth Enamel Subsurface Lesion Formation Induced by Dental Plaque. Caries Research, 2014, 48, 73-89.	2.0	13
354	Utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. International Journal of Environmental Science and Technology, 2014, 11, 671-684.	3.5	14
355	Evaluating the main and side effects of high salinity on aerobic granular sludge. Applied Microbiology and Biotechnology, 2014, 98, 1339-1348.	3.6	133
356	Temperature effect on acetate and propionate consumption by sulfate-reducing bacteria in saline wastewater. Applied Microbiology and Biotechnology, 2014, 98, 4245-4255.	3.6	16
357	Physiological and kinetic characterization of a suspended cell anammox culture. Water Research, 2014, 60, 1-14.	11.3	361
358	A two-dimensional mechanistic model for scaling in spiral wound membrane systems. Chemical Engineering Journal, 2014, 241, 77-91.	12.7	46
359	Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor. Environmental Technology (United Kingdom), 2014, 35, 1027-1037.	2.2	90
360	Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin. Water Research, 2014, 50, 101-113.	11.3	197

#	Article	IF	Citations
361	Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. Water Research, 2014, 49, 251-264.	11.3	67
362	Struvite formation for enhanced dewaterability of digested wastewater sludge. Environmental Technology (United Kingdom), 2014, 35, 549-555.	2.2	27
363	Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. Journal of Biotechnology, 2014, 192, 161-169.	3.8	119
364	Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Water Research, 2014, 67, 227-242.	11.3	49
365	Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture. Water Research, 2014, 66, 190-198.	11.3	30
366	Anammox Growth on Pretreated Municipal Wastewater. Environmental Science & Env	10.0	201
367	Aggregation and surface hydrophobicity of selected microorganism due to the effect of substrate, pH and temperature. International Biodeterioration and Biodegradation, 2014, 93, 202-209.	3.9	10
368	A review of biological sulfate conversions in wastewater treatment. Water Research, 2014, 65, 1-21.	11.3	299
369	An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR). Water Research, 2014, 66, 75-84.	11.3	46
370	Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO). Applied Microbiology and Biotechnology, 2014, 98, 7609-7622.	3.6	46
371	Absolute Quantification of Individual Biomass Concentrations in a Methanogenic Coculture. AMB Express, 2014, 4, 35.	3.0	17
372	Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1859-1865.	1.7	82
373	Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Research, 2014, 66, 111-121.	11.3	244
374	Full-scale partial nitritation/anammox experiences – An application survey. Water Research, 2014, 55, 292-303.	11.3	1,401
375	Modeling PHA-producing microbial enrichment cultures—towards a generalized model with predictive power. New Biotechnology, 2014, 31, 324-334.	4.4	44
376	Impact of non-storing biomass on PHA production: An enrichment culture on acetate and methanol. International Journal of Biological Macromolecules, 2014, 71, 74-80.	7.5	36
377	Combining flow cytometry and 16S rRNA gene pyrosequencing: A promising approach for drinking water monitoring and characterization. Water Research, 2014, 63, 179-189.	11.3	111
378	Anticipating the next century of wastewater treatment. Science, 2014, 344, 1452-1453.	12.6	539

#	Article	IF	CITATIONS
379	Application of the Anammox Process. , 2014, , 237-263.		3
380	Full-scale Experiences with Aerobic Granular Biomass Technology for Treatment of Urban and Industrial Wastewater. Proceedings of the Water Environment Federation, 2014, 2014, 2347-2357.	0.0	14
381	Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens. Scientific Reports, 2014, 4, 5268.	3.3	38
382	Nitrogen removal with the anaerobic ammonium oxidation process. Biotechnology Letters, 2013, 35, 1145-1154.	2.2	70
383	A capillary bioreactor to increase methane transfer and oxidation through Taylor flow formation and transfer vector addition. Chemical Engineering Journal, 2013, 217, 91-98.	12.7	23
384	Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Applied Microbiology and Biotechnology, 2013, 97, 7447-7458.	3.6	113
385	Factors influencing the density of aerobic granular sludge. Applied Microbiology and Biotechnology, 2013, 97, 7459-7468.	3.6	65
386	Impact of dissolved hydrogen partial pressure on mixed culture fermentations. Applied Microbiology and Biotechnology, 2013, 97, 2617-2625.	3.6	46
387	Apatite accumulation enhances the mechanical property of anammox granules. Water Research, 2013, 47, 4556-4566.	11.3	71
388	The biodrying concept: An innovative technology creating energy from sewage sludge. Bioresource Technology, 2013, 147, 124-129.	9.6	99
389	Biofilm development and the dynamics of preferential flow paths in porous media. Biofouling, 2013, 29, 1069-1086.	2.2	60
390	Survival of the fattest. Energy and Environmental Science, 2013, 6, 3404.	30.8	50
391	Sieving wastewater – Cellulose recovery, economic and energy evaluation. Water Research, 2013, 47, 43-48.	11.3	148
392	The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Research, 2013, 47, 57-65.	11.3	151
393	Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Research, 2013, 47, 6122-6129.	11.3	164
394	Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research, 2013, 47, 7131-7142.	11.3	250
395	Characterization of sulfate-reducing granular sludge in the SANI® process. Water Research, 2013, 47, 7042-7052.	11.3	92
396	Potential of mechanical cleaning of membranes from a membrane bioreactor. Journal of Membrane Science, 2013, 429, 259-267.	8.2	19

#	Article	IF	Citations
397	Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Research, 2013, 47, 3120-3130.	11.3	70
398	Occurrence of PAOI in a low temperature EBPR system. Chemosphere, 2013, 92, 1314-1320.	8.2	29
399	Mineral CO2 sequestration by environmental biotechnological processes. Trends in Biotechnology, 2013, 31, 139-146.	9.3	47
400	Biological active groundwater filters: exploiting natural diversity. Water Science and Technology: Water Supply, 2013, 13, 29-35.	2.1	2
401	Determining the impacts of fermentative bacteria on wollastonite dissolution kinetics. Applied Microbiology and Biotechnology, 2013, 97, 2743-2752.	3.6	15
402	Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing bacteria. Environmental Technology (United Kingdom), 2013, 34, 1555-1566.	2.2	74
403	Butyrate as preferred substrate for polyhydroxybutyrate production. Bioresource Technology, 2013, 142, 232-239.	9.6	87
404	A new biological phosphorus removal process in association with sulfur cycle. Water Research, 2013, 47, 3057-3069.	11.3	42
405	Lumped Pathway Metabolic Model of Organic Carbon Accumulation and Mobilization by the Alga Chlamydomonas reinhardtii. Environmental Science & Eamp; Technology, 2013, 47, 3258-3267.	10.0	34
406	Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments. Water Research, 2013, 47, 1209-1217.	11.3	48
407	Looking Beyond Struvite for P-Recovery. Environmental Science & Environmental	10.0	204
408	Critical review of activated sludge modeling: State of process knowledge, modeling concepts, and limitations. Biotechnology and Bioengineering, 2013, 110, 24-46.	3.3	97
409	Granulation of anaerobic sludge in the sulfate-reducing up-flow sludge bed (SRUSB) of SANI® process. Water Science and Technology, 2013, 68, 560-566.	2.5	22
410	Methane and nitrous oxide emissions from municipal wastewater treatment – results from a long-term study. Water Science and Technology, 2013, 67, 2350-2355.	2.5	180
411	Industrial flue gas desulfurization waste may offer an opportunity to facilitate SANI® application for significant sludge minimization in freshwater wastewater treatment. Water Science and Technology, 2013, 67, 2822-2826.	2.5	15
412	A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnology and Bioengineering, 2013, 110, 1884-1894.	3.3	43
413	Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors. Biotechnology and Bioengineering, 2013, 110, 3148-3155.	3.3	26
414	Nitrogen Removal by a Nitritation-Anammox Bioreactor at Low Temperature. Applied and Environmental Microbiology, 2013, 79, 2807-2812.	3.1	258

#	Article	IF	Citations
415	Integration of Anammox into the aerobic granular sludge process for the conversion of BOD in wastewater treatment at ambient temperatures. Proceedings of the Water Environment Federation, 2013, 2013, 786-787.	0.0	0
416	High-Frequency Field Measurement of Nitrous oxide (N ₂ O) Gas Emissions and Influencing Factors at WWTPs under Dry and Wet Weather Conditions. Proceedings of the Water Environment Federation, 2013, 2013, 621-629.	0.0	5
417	Phospaq: Full scale experience with phosphorus recovery via controlled struvite precipitation. Proceedings of the Water Environment Federation, 2013, 2013, 311-317.	0.0	7
418	Coupling ASM3 and ADM1 for wastewater treatment process optimisation and biogas production in a developing country: case-study Surat, India. Journal of Water Sanitation and Hygiene for Development, 2013, 3, 12-25.	1.8	7
419	New approaches to characterizing and understanding biofouling of spiral wound membrane systems. Water Science and Technology, 2012, 66, 88-94.	2.5	22
420	Phosphorus release and uptake during start-up of a covered and non-aerated sequencing batch reactor with separate feeding of VFA and sulfate. Water Science and Technology, 2012, 65, 840-844.	2.5	7
421	N ₂ O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor – a simulation study. Environmental Technology (United Kingdom), 2012, 33, 2281-2290.	2.2	25
422	Strength characteristics of aerobic granular sludge. Water Science and Technology, 2012, 65, 309-316.	2.5	35
423	Integration of seawater and grey water reuse to maximize alternative water resource for coastal areas: the case of the Hong Kong International Airport. Water Science and Technology, 2012, 65, 410-417.	2.5	66
424	A Lumped Pathway Metabolic Model of Carbohydrate- and Lipid-Accumulating Phototrophs. Proceedings of the Water Environment Federation, 2012, 2012, 3600-3615.	0.0	0
425	The effect of inorganic carbon limitation on nitrite oxidizing bacteria. Proceedings of the Water Environment Federation, 2012, 2012, 1968-1974.	0.0	1
426	Inhibition effect of swine wastewater heavy metals and antibiotics on anammox activity. Water Science and Technology, 2012, 66, 1519-1526.	2.5	109
427	Structured morphological modeling as a framework for rational strain design of Streptomyces species. Antonie Van Leeuwenhoek, 2012, 102, 409-423.	1.7	41
428	Measuring biomass specific ammonium, nitrite and phosphate uptake rates in aerobic granular sludge. Chemosphere, 2012, 89, 1161-1168.	8.2	46
429	Aerobic sludge granulation: A tale of two polysaccharides?. Water Research, 2012, 46, 4803-4813.	11.3	177
430	Evaluating the solid retention time of bacteria in flocculent and granular sludge. Water Research, 2012, 46, 4973-4980.	11.3	77
431	Temperature and salt effects on settling velocity in granular sludge technology. Water Research, 2012, 46, 5445-5451.	11.3	73
432	Waste to resource: Converting paper mill wastewater to bioplastic. Water Research, 2012, 46, 5517-5530.	11.3	176

#	Article	IF	Citations
433	REMOVED: Modeling Biofouling, Scaling and Combined Fouling in Reverse Osmosis Membrane Devices. Procedia Engineering, 2012, 44, 341-342.	1.2	4
434	Quantitative Measurement and Visualization of Biofilm O2 Consumption Rates Inmembrane Filtration Systems. Procedia Engineering, 2012, 44, 233-234.	1.2	1
435	Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures. Water Research, 2012, 46, 136-144.	11.3	191
436	SANI® process realizes sustainable saline sewage treatment: Steady state model-based evaluation of the pilot-scale trial of the process. Water Research, 2012, 46, 475-490.	11.3	71
437	The contribution of exopolysaccharides induced struvites accumulation to ammonium adsorption in aerobic granular sludge. Water Research, 2012, 46, 986-992.	11.3	57
438	Phosphorus limitation in nitrifying groundwater filters. Water Research, 2012, 46, 1061-1069.	11.3	52
439	The effect of nitrite inhibition on the anammox process. Water Research, 2012, 46, 2559-2569.	11.3	281
440	Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Research, 2012, 46, 3737-3753.	11.3	204
441	Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures. Water Research, 2012, 46, 3805-3816.	11.3	246
442	Methane emission during municipal wastewater treatment. Water Research, 2012, 46, 3657-3670.	11.3	263
443	Temperature and salt effects on settling velocity in granular sludge technology. Water Research, 2012, 46, 3897-3902.	11.3	47
444	Mathematical modelling of tooth demineralisation and pH profiles in dental plaque. Journal of Theoretical Biology, 2012, 309, 159-175.	1.7	35
445	Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME). Bioresource Technology, 2012, 124, 208-216.	9.6	47
446	Effect of Different Operational Conditions on Biofilm Development, Nitrification, and Nitrifying Microbial Population in Moving-Bed Biofilm Reactors. Environmental Science &	10.0	174
447	Metabolic modeling of denitrification in Agrobacterium tumefaciens: a tool to study inhibiting and activating compounds for the denitrification pathway. Frontiers in Microbiology, 2012, 3, 370.	3.5	17
448	Evaluation and optimization of nucleic acid extraction methods for the molecular analysis of bacterial communities associated with corroded carbon steel. Biofouling, 2012, 28, 363-380.	2.2	13
449	Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum <i>Chloroflexi</i> . ISME Journal, 2012, 6, 2245-2256.	9.8	345
450	The granule size distribution in an anammoxâ€based granular sludge reactor affects the conversion—Implications for modeling. Biotechnology and Bioengineering, 2012, 109, 1629-1636.	3.3	94

#	Article	IF	Citations
451	Improved phosphate removal by selective sludge discharge in aerobic granular sludge reactors. Biotechnology and Bioengineering, 2012, 109, 1919-1928.	3.3	74
452	The demonstration of a novel sulfur cycleâ€based wastewater treatment process: Sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) biological nitrogen removal process. Biotechnology and Bioengineering, 2012, 109, 2778-2789.	3.3	42
453	Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Applied Microbiology and Biotechnology, 2012, 94, 1657-1666.	3.6	142
454	Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels. Chemical Engineering Journal, 2012, 188, 30-39.	12.7	82
455	Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination, 2012, 295, 1-10.	8.2	88
456	Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor. Bioresource Technology, 2012, 114, 217-223.	9.6	103
457	Quantitative measurement and visualization of biofilm O2 consumption rates in membrane filtration systems. Journal of Membrane Science, 2012, 392-393, 66-75.	8.2	22
458	The potential of standard and modified feed spacers for biofouling control. Journal of Membrane Science, 2012, 403-404, 58-70.	8.2	77
459	<i>Gallionella</i> spp. in trickling filtration of subsurface aerated and natural groundwater. Biotechnology and Bioengineering, 2012, 109, 904-912.	3.3	15
460	The effect of biofilm permeability on bioâ€clogging of porous media. Biotechnology and Bioengineering, 2012, 109, 1031-1042.	3.3	99
461	Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading. Applied Microbiology and Biotechnology, 2012, 93, 401-410.	3.6	27
462	Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Applied Microbiology and Biotechnology, 2012, 93, 1281-1294.	3.6	148
463	Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure. Applied and Environmental Microbiology, 2011, 77, 7942-7953.	3.1	150
464	Biofouling in membrane devices treating water with different salinities: a modeling study. Desalination and Water Treatment, 2011, 34, 284-289.	1.0	4
465	Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions, 2011, 39, 1832-1837.	3.4	160
466	Plasticicumulans acidivorans gen. nov., sp. nov., a polyhydroxyalkanoate-accumulating gammaproteobacterium from a sequencing-batch bioreactor. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2314-2319.	1.7	42
467	Segregation of Biomass in Cyclic Anaerobic/Aerobic Granular Sludge Allows the Enrichment of Anaerobic Ammonium Oxidizing Bacteria at Low Temperatures. Environmental Science & Environmental &	10.0	159
468	Effect of polymeric substrate on sludge settleability. Water Research, 2011, 45, 263-273.	11.3	73

#	Article	IF	Citations
469	Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems. Water Research, 2011, 45, 405-416.	11.3	83
470	Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability. Water Research, 2011, 45, 63-74.	11.3	81
471	Global sensitivity analysis in wastewater treatment plant model applications: Prioritizing sources of uncertainty. Water Research, 2011, 45, 639-651.	11.3	133
472	Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production. Water Research, 2011, 45, 1309-1321.	11.3	105
473	Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO–GAO competition at high temperatures. Water Research, 2011, 45, 3291-3299.	11.3	148
474	A novel scenario for biofouling control of spiral wound membrane systems. Water Research, 2011, 45, 3890-3898.	11.3	56
475	Assessment of nitrification in groundwater filters for drinking water production by qPCR and activity measurement. Water Research, 2011, 45, 4008-4018.	11.3	37
476	The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater. Water Research, 2011, 45, 4711-4721.	11.3	85
477	Effect of temperature shocks on membrane fouling in membrane bioreactors. Water Research, 2011, 45, 4491-4500.	11.3	91
478	Limited filamentous bulking in order to enhance integrated nutrient removal and effluent quality. Water Research, 2011, 45, 4877-4884.	11.3	31
479	Evaluating sludge minimization caused by predation and viral infection based on the extended activated sludge model No. 2d. Water Research, 2011, 45, 5130-5140.	11.3	33
480	Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. Water Research, 2011, 45, 5389-5398.	11.3	66
481	Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules. Water Research, 2011, 45, 5257-5265.	11.3	105
482	A full scale worm reactor for efficient sludge reduction by predation in a wastewater treatment plant. Water Research, 2011, 45, 5916-5924.	11.3	59
483	Reduced iron induced nitric oxide and nitrous oxide emission. Water Research, 2011, 45, 5945-5952.	11.3	137
484	2-Fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Research, 2011, 45, 6745-6752.	11.3	67
485	Stepwise Calibration of the Activated Sludge Model No. 1 at a Partially Denitrifying Large Wastewater Treatment Plant. Water Environment Research, 2011, 83, 2036-2048.	2.7	6
486	Understanding energy saving and CO _{2 reduction in wastewater treatment plants. International Journal of Environment and Pollution, 2011, 45, 237.}	0.2	1

#	Article	IF	CITATIONS
487	Divergence Between Respirometry and Physicochemical Methods in the Fractionation of the Chemical Oxygen Demand in Municipal Wastewater. Water Environment Research, 2011, 83, 162-172.	2.7	13
488	Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor. ISME Journal, 2011, 5, 896-907.	9.8	82
489	Microbial community of sulfate-reducing up-flow sludge bed in the SANI® process for saline sewage treatment. Applied Microbiology and Biotechnology, 2011, 90, 2015-2025.	3.6	38
490	Microbial community engineering for biopolymer production from glycerol. Applied Microbiology and Biotechnology, 2011, 92, 631-639.	3.6	72
491	Review of mass transfer aspects for biological gas treatment. Applied Microbiology and Biotechnology, 2011, 91, 873-886.	3.6	162
492	Polyhydroxybutyrate production from lactate using a mixed microbial culture. Biotechnology and Bioengineering, 2011, 108, 2022-2035.	3.3	132
493	Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes. Desalination, 2011, 265, 206-212.	8.2	57
494	Application of anammox for N-removal can turn sewage treatment plant into biofuel factory. Biofuels, 2011, 2, 237-241.	2.4	11
495	Water and energy as inseparable twins for sustainable solutions. Water Science and Technology, 2011, 63, 88-92.	2.5	43
496	Pilot scale evaluation of SANI® process for sludge minimization and greenhouse gas reduction in saline sewage treatment. Water Science and Technology, 2011, 63, 2149-2154.	2.5	31
497	Urine nitrification and sewer discharge to realize in-sewer denitrification to simplify sewage treatment in Hong Kong. Water Science and Technology, 2011, 64, 618-626.	2.5	31
498	Removal of Selected Endocrine Disrupting Chemicals and Personal Care Products in Surface Waters and Secondary Wastewater by Ozonation. Water Environment Research, 2011, 83, 684-691.	2.7	11
499	Quantification of greenhouse gas emissions from municipal wastewater treatment plants: a case study. Communications in Agricultural and Applied Biological Sciences, 2011, 76, 155-8.	0.0	0
500	Stepwise calibration of the activated sludge model no. 1 at a partially denitrifying large wastewater treatment plant. Water Environment Research, 2011, 83, 2036-48.	2.7	0
501	Overview of Applied Research with Nereda $\hat{A}^{@}$ -Technology in the Netherlands. Proceedings of the Water Environment Federation, 2010, 2010, 103-113.	0.0	2
502	New Framework for Standardized Notation in Wastewater Treatment Modelling. Proceedings of the Water Environment Federation, 2010, 2010, 1099-1100.	0.0	1
503	Experimental evaluation of decrease in the activities of polyphosphate/glycogenâ€accumulating organisms due to cell death and activity decay in activated sludge. Biotechnology and Bioengineering, 2010, 106, 399-407.	3.3	26
504	An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR. Applied Microbiology and Biotechnology, 2010, 86, 311-317.	3.6	53

#	Article	IF	CITATIONS
505	Formation of pure struvite at neutral pH by electrochemical deposition. Chemical Engineering Journal, 2010, 159, 280-283.	12.7	102
506	Microbial phytase-induced calcium-phosphate precipitation â€" a potential soil stabilization method. Folia Microbiologica, 2010, 55, 621-624.	2.3	19
507	Modelling microbial fuel cells with suspended cells and added electron transfer mediator. Journal of Applied Electrochemistry, 2010, 40, 151-162.	2.9	66
508	Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes. Food and Bioproducts Processing, 2010, 88, 401-408.	3.6	46
509	Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and Bioengineering, 2010, 105, 918-923.	3.3	20
510	Influence of ammonium on the accumulation of polyhydroxybutyrate (PHB) in aerobic open mixed cultures. Journal of Biotechnology, 2010, 147, 73-79.	3.8	77
511	Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. Journal of Membrane Science, 2010, 346, 71-85.	8.2	105
512	Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging. Journal of Membrane Science, 2010, 362, 202-210.	8.2	112
513	Modeling the effect of biofilm formation on reverse osmosis performance: Flux, feed channel pressure drop and solute passage. Journal of Membrane Science, 2010, 365, 1-15.	8.2	100
514	Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment. Advances in Space Research, 2010, 46, 1149-1155.	2.6	20
515	Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry, 2010, 78, 8-24.	4.6	186
516	Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 2010, 36, 112-117.	3.6	523
517	Potential soil reinforcement by biological denitrification. Ecological Engineering, 2010, 36, 168-175.	3.6	341
518	Microbial diversity of an oil-water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments. FEMS Microbiology Ecology, 2010, 71, 428-443.	2.7	52
519	Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environmental Microbiology, 2010, 12, 192-206.	3.8	108
520	Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of <i>Magnetospirillum</i> strain J10 and <i>Magnetospirillum gryphiswaldense</i> Environmental Microbiology, 2010, 12, 1031-1040.	3.8	34
521	Effect of Nitric Oxide on Anammox Bacteria. Applied and Environmental Microbiology, 2010, 76, 6304-6306.	3.1	83
522	Integrated approach for biofouling control. Water Science and Technology, 2010, 62, 2477-2490.	2.5	44

#	Article	IF	Citations
523	Fecal coliform removal in a sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process for saline sewage treatment. Water Science and Technology, 2010, 62, 2564-2570.	2.5	11
524	Microbiological Endogenous Processes in Biological Wastewater Treatment Systems. Critical Reviews in Environmental Science and Technology, 2010, 40, 239-265.	12.8	73
525	Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 1721-1728.	3.0	656
526	New framework for standardized notation in wastewater treatment modelling. Water Science and Technology, 2010, 61, 841-857.	2.5	73
527	Cell Flexibility Affects the Alignment of Model Myxobacteria. Biophysical Journal, 2010, 99, 3129-3138.	0.5	22
528	Mechanisms and Specific Directionality of Autotrophic Nitrous Oxide and Nitric Oxide Generation during Transient Anoxia. Environmental Science & Envir	10.0	280
529	Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor. Environmental Technology (United Kingdom), 2010, 31, 1271-1280.	2.2	103
530	Biofilm Formation on Reverse Osmosis Membranes Is Initiated and Dominated by <i>Sphingomonas</i> spp. Applied and Environmental Microbiology, 2010, 76, 2623-2632.	3.1	157
531	Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems. Water Research, 2010, 44, 689-702.	11.3	80
532	Short- and long-term temperature effects on aerobic polyhydroxybutyrate producing mixed cultures. Water Research, 2010, 44, 1689-1700.	11.3	45
533	Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Research, 2010, 44, 2141-2152.	11.3	157
534	Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide. Water Research, 2010, 44, 2171-2178.	11.3	59
535	Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Research, 2010, 44, 3355-3364.	11.3	259
536	The effect of primary sedimentation on full-scale WWTP nutrient removal performance. Water Research, 2010, 44, 3375-3384.	11.3	36
537	Phosphate limitation to control biofouling. Water Research, 2010, 44, 3454-3466.	11.3	117
538	Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate. Water Research, 2010, 44, 3993-4001.	11.3	19
539	Development of granular sludge for textile wastewater treatment. Water Research, 2010, 44, 4341-4350.	11.3	120
540	Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Water Research, 2010, 44, 4473-4486.	11.3	89

#	Article	IF	Citations
541	Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Research, 2010, 44, 4992-5004.	11.3	130
542	Behavior of polymeric substrates in an aerobic granular sludge system. Water Research, 2010, 44, 5929-5938.	11.3	144
543	Editorial. Water Research, 2010, 44, 4825.	11.3	0
544	Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science and Technology, 2010, 61, 1715-1722.	2.5	205
545	Sewage Treatment with Anammox. Science, 2010, 328, 702-703.	12.6	989
546	A Generalized Method for Thermodynamic State Analysis of Environmental Systems. Critical Reviews in Environmental Science and Technology, 2010, 40, 1-54.	12.8	164
547	Water quality and treatment of river bank filtrate. Drinking Water Engineering and Science, 2010, 3, 79-90.	0.8	32
548	Habitability on planetary surfaces: interdisciplinary preparation phase for future Mars missions. International Journal of Astrobiology, 2009, 8, 301-315.	1.6	20
549	Modelling using rRNA-structured biomass models. Water Science and Technology, 2009, 59, 661-671.	2.5	4
550	Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Science and Technology, 2009, 60, 3211-3217.	2.5	135
551	Extended mixed-culture biofilms (MCB) model to describe integrated fixed film/activated sludge (IFAS) process behaviour. Water Science and Technology, 2009, 60, 3233-3241.	2.5	14
552	A novel sludge minimized biological nitrogen removal process for saline sewage treatment. Water Science and Technology, 2009, 59, 1893-1899.	2.5	10
553	Influence of iron on nitrification in full-scale drinking water trickling filters. Journal of Water Supply: Research and Technology - AQUA, 2009, 58, 247-256.	1.4	23
554	Struvite formation, analytical methods and effects of pH and Ca ^{2 +} . Water Science and Technology, 2009, 59, 1077.	2.5	13
555	Modelâ€based data evaluation of polyhydroxybutyrate producing mixed microbial cultures in aerobic sequencing batch and fedâ€batch reactors. Biotechnology and Bioengineering, 2009, 104, 50-67.	3.3	57
556	Xylose anaerobic conversion by open-mixed cultures. Applied Microbiology and Biotechnology, 2009, 82, 231-239.	3.6	68
557	Microbial sulfide oxidation in the oxic \tilde{A} ¢ \hat{A} € \hat{A} "anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiology Ecology, 2009, 70, 54-65.	2.7	27
558	Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. Journal of Membrane Science, 2009, 345, 340-354.	8.2	149

#	Article	IF	CITATIONS
559	Sensitive pressure drop measurements of individual lead membrane elements for accurate early biofouling detection. Journal of Membrane Science, 2009, 338, 92-99.	8.2	60
560	Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration. Journal of Membrane Science, 2009, 345, 207-216.	8.2	123
561	Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production. Water Research, 2009, 43, 182-194.	11.3	80
562	Modeling the PAO–GAO competition: Effects of carbon source, pH and temperature. Water Research, 2009, 43, 450-462.	11.3	309
563	Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: A feed spacer problem. Water Research, 2009, 43, 583-594.	11.3	283
564	Characterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh. Water Research, 2009, 43, 1720-1730.	11.3	78
565	A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Research, 2009, 43, 2363-2372.	11.3	185
566	Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43, 4093-4103.	11.3	1,032
567	Temperature effects on glycogen accumulating organisms. Water Research, 2009, 43, 2852-2864.	11.3	99
568	Response to the comment on "Modelling the PAO-GAO competition: Effects of carbon source, pH and temperature―by Dwight Houweling etÂal Water Research, 2009, 43, 2950-2951.	11.3	3
569	Uncertainty analysis in WWTP model applications: A critical discussion using an example from design. Water Research, 2009, 43, 2894-2906.	11.3	132
570	A biofilm model for prediction of pollutant transformation in sewers. Water Research, 2009, 43, 3187-3198.	11.3	57
571	Steady-state model-based evaluation of sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) processa [*] †. Water Research, 2009, 43, 3613-3621.	11.3	44
572	Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge. Water Research, 2009, 43, 3604-3612.	11.3	112
573	A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environmental Science & Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater.	10.0	412
574	Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity. Biomacromolecules, 2009, 10, 670-676.	5.4	342
575	Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction. Biofouling, 2009, 25, 543-555.	2.2	164
576	A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: Fact or fiction?. Journal of Membrane Science, 2009, 326, 36-44.	8.2	85

#	Article	IF	Citations
577	Nitrification of urine for H2S control in pressure sewers. Water Practice and Technology, 2009, 4, .	2.0	12
578	Ethics in Innovation: Cooperation and Tension. Philosophy of Engineering and Technology, 2009, , 215-226.	0.3	1
579	Use of Waste Streams and Microbes for in situ Transformation of Sand Into Sandstone. , 2009, , .		7
580	Phototrophic biofilms and their potential applications. Journal of Applied Phycology, 2008, 20, 227-235.	2.8	208
581	Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Applied Microbiology and Biotechnology, 2008, 80, 1121-1130.	3.6	104
582	Thermodynamic and kinetic characterization using process dynamics: Acidophilic ferrous iron oxidation by <i>Leptospirillum ferrooxidans</i> . Biotechnology and Bioengineering, 2008, 100, 49-60.	3.3	11
583	Glycerol fermentation by (open) mixed cultures: A chemostat study. Biotechnology and Bioengineering, 2008, 100, 1088-1098.	3.3	107
584	The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnology and Bioengineering, 2008, 101, 286-294.	3.3	458
585	Temperature effects on the aerobic metabolism of glycogenâ€accumulating organisms. Biotechnology and Bioengineering, 2008, 101, 295-306.	3.3	38
586	Nuclear magnetic resonance microscopy studies of membrane biofouling. Journal of Membrane Science, 2008, 323, 37-44.	8.2	103
587	Diversity and expression of cyanobacterial hupS genes in pure cultures and in a nitrogen-limited phototrophic biofilm. FEMS Microbiology Ecology, 2008, 63, 292-300.	2.7	5
588	Formation and Detachment of Biofilms and Granules in a Nitrifying Biofilm Airlift Suspension Reactor. Biotechnology Progress, 2008, 12, 764-772.	2.6	48
589	Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations. Systematic and Applied Microbiology, 2008, 31, 114-125.	2.8	40
590	Selection between alcohols and volatile fatty acids as external carbon sources for EBPR. Water Research, 2008, 42, 557-566.	11.3	77
591	Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 2008, 42, 812-826.	11.3	394
592	Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. Water Research, 2008, 42, 2349-2360.	11.3	170
593	Comment on "Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?―by Zhou, Y., Pijuan, M., Zeng, R., Lu, Huabing and Yuan Z Water Research, 2008, 42, 3561-3562.	11.3	5
594	Data evaluation of full-scale wastewater treatment plants by mass balance. Water Research, 2008, 42, 4645-4655.	11.3	53

#	Article	IF	CITATIONS
595	Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Research, 2008, 42, 4856-4868.	11.3	207
596	Struvite formation, analytical methods and effects of pH and Ca2 +. Water Science and Technology, 2008, 58, 1687-1692.	2.5	164
597	Effect of Dynamic Process Conditions on Nitrogen Oxides Emission from a Nitrifying Culture. Environmental Science & Environmental Science & Environmen	10.0	250
598	Nitrous and Nitric Oxides and the Effect of Oxygen Level and Nitrite Concentration on its Emission from Nitritation and Nitrification-Denitrification Reactors. , 2008, , .		1
599	Modeling mixed culture fermentations; the role of different electron carriers. Water Science and Technology, 2008, 57, 493-497.	2.5	14
600	Simultaneous storage and utilization of polyhydroxyalkanoates and glycogen under aerobic conditions. Water Science and Technology, 2008, 58, 945-951.	2.5	10
601	Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Science and Technology, 2008, 57, 965-971.	2.5	137
602	Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant. Applied and Environmental Microbiology, 2008, 74, 5297-5304.	3.1	120
603	Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine. Applied and Environmental Microbiology, 2008, 74, 4417-4426.	3.1	78
604	Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts. Water Science and Technology, 2008, 58, 1155-1171.	2.5	123
605	Monitoring and control of biofouling in nanofiltration and reverse osmosis membranes. Water Science and Technology: Water Supply, 2008, 8, 449-458.	2.1	7
606	Biological Wastewater Treatment: Principles, Modelling and Design., 2008,,.		432
607	Substrate storage concepts in modeling activated sludge systems for tannery wastewaters. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 2159-2166.	1.7	7
608	Kinetics of Phosphorus Release and Uptake in a Membrane-Assisted Biological Phosphorus Removal Process. Journal of Environmental Engineering, ASCE, 2007, 133, 899-908.	1.4	16
609	Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. Water Science and Technology, 2007, 55, 283-290.	2.5	43
610	Use of modelling for optimization and upgrade of a tropical wastewater treatment plant in a developing country. Water Science and Technology, 2007, 56, 21-31.	2.5	12
611	The membrane fouling simulator: a suitable tool for prediction and characterisation of membrane fouling. Water Science and Technology, 2007, 55, 197-205.	2.5	47
612	Settling behaviour of aerobic granular sludge. Water Science and Technology, 2007, 56, 55-63.	2.5	33

#	Article	IF	Citations
613	Investigation of microbial communities on reverse osmosis membranes used for process water production. Water Science and Technology, 2007, 55, 181-190.	2.5	23
614	A PRACTICAL METHOD FOR QUANTIFICATION OF PAO AND GAO POPULATIONS IN ACTIVATED SLUDGE SYSTEMS. Proceedings of the Water Environment Federation, 2007, 2007, 39-63.	0.0	0
615	OCCURRENCE OF GLYCOGEN ACCUMULATING ORGANISMS (GAO) AT FULL-SCALE ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL (EBPR) WASTEWATER TREATMENT PLANTS. Proceedings of the Water Environment Federation, 2007, 2007, 968-989.	0.0	3
616	Unraveling the Source of Nitric Oxide Emission During Nitrification. Water Environment Research, 2007, 79, 2499-2509.	2.7	65
617	A Practical Method for Quantification of Phosphorus―and Glycogenâ€Accumulating Organism Populations in Activated Sludge Systems. Water Environment Research, 2007, 79, 2487-2498.	2.7	55
618	Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Research, 2007, 41, 458-466.	11.3	383
619	Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research, 2007, 41, 4149-4163.	11.3	983
620	A computational model for biofilm-based microbial fuel cells. Water Research, 2007, 41, 2921-2940.	11.3	381
621	Development of a PCR for the detection and identification of cyanobacterial nifD genes. Journal of Microbiological Methods, 2007, 70, 550-556.	1.6	15
622	Multi-Scale Individual-Based Model of Microbial and Bioconversion Dynamics in Aerobic Granular Sludge. Environmental Science &	10.0	136
623	Aerobic granular sludge – state of the art. Water Science and Technology, 2007, 55, 75-81.	2.5	260
624	Full-scale granular sludge Anammox process. Water Science and Technology, 2007, 55, 27-33.	2.5	152
625	Modelling of an Oil Refinery Wastewater Treatment Plant. Environmental Technology (United) Tj ETQq1 1 0.7843	14 rgBT /0 2.2	Overlock 10
626	Different carbon isotope fractionation patterns during the development of phototrophic freshwater and marine biofilms. Biogeosciences, 2007, 4, 613-626.	3.3	33
627	Kinetic model of a granular sludge SBR: Influences on nutrient removal. Biotechnology and Bioengineering, 2007, 97, 801-815.	3.3	142
628	Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms. Biotechnology and Bioengineering, 2007, 97, 483-495.	3.3	78
629	Kinetic modeling of phototrophic biofilms: The PHOBIA model. Biotechnology and Bioengineering, 2007, 97, 1064-1079.	3.3	91
630	Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. Biotechnology and Bioengineering, 2007, 98, 69-79.	3.3	193

#	Article	IF	Citations
631	Influence of temperature and pH on the kinetics of the Sharon nitritation process. Journal of Chemical Technology and Biotechnology, 2007, 82, 471-480.	3.2	174
632	Biological nutrient removal in a sequencing batch reactor using ethanol as carbon source. Journal of Chemical Technology and Biotechnology, 2007, 82, 898-904.	3.2	28
633	Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 2007, 18, 207-212.	6.6	517
634	Heterotrophic Pioneers Facilitate Phototrophic Biofilm Development. Microbial Ecology, 2007, 54, 578-585.	2.8	79
635	Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry, 2007, 42, 715-720.	3.7	102
636	Interaction between control and design of a SHARON reactor: economic considerations in a plant-wide (BSM2) context. Water Science and Technology, 2007, 56, 117-125.	2.5	16
637	Formation of Aerobic Granules with Domestic Sewage. Journal of Environmental Engineering, ASCE, 2006, 132, 694-697.	1.4	154
638	Biological Nitrogen Removal via Nitrite of Reject Water with a SBR and Chemostat SHARON/Denitrification Process. Industrial & Engineering Chemistry Research, 2006, 45, 7656-7660.	3.7	22
639	Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers. Water Research, 2006, 40, 1377-1388.	11.3	237
640	Continuity-based model interfacing for plant-wide simulation: A general approach. Water Research, 2006, 40, 2817-2828.	11.3	51
641	Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Research, 2006, 40, 3099-3108.	11.3	92
642	Potential phosphorus recovery in a WWTP with the BCFS \hat{A}^{\otimes} process: Interactions with the biological process. Water Research, 2006, 40, 3507-3516.	11.3	34
643	Enhancing bio-P removal by phosphate recovery from anaerobic supernatant. Water Science and Technology: Water Supply, 2006, 6, 11-18.	2.1	0
644	Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria. Biochemical Society Transactions, 2006, 34, 179-181.	3.4	29
645	Effect of Formaldehyde on Biofilm Activity and Morphology in an Ultracompact Biofilm Reactor for Carbonaceous Wastewater Treatment. Water Environment Research, 2006, 78, 372-380.	2.7	5
646	Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process. Water Science and Technology, 2006, 53, 45-54.	2.5	39
647	Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS). Water Science and Technology, 2006, 53, 191-198.	2.5	23
648	Optimization of nitrogen and phosphorus limitation for better biodegradable plastic production and organic removal using single fed-batch mixed cultures and renewable resources. Water Science and Technology, 2006, 53, 15-20.	2.5	26

#	Article	IF	CITATIONS
649	Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process. Water Science and Technology, 2006, 54, 93-100.	2.5	17
650	Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage. Water Science and Technology, 2006, 53, 227-235.	2.5	84
651	A more unifying hypothesis for biofilm structures. FEMS Microbiology Ecology, 2006, 24, 181-183.	2.7	12
652	On the reproducibility of microcosm experiments $\tilde{A}^{\hat{L}}$ different community composition in parallel phototrophic biofilm microcosms. FEMS Microbiology Ecology, 2006, 58, 169-178.	2.7	44
653	Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current. Biochemical Engineering Journal, 2006, 28, 23-29.	3.6	106
654	Biological treatment of sludge digester liquids. Water Science and Technology, 2006, 53, 11-20.	2.5	100
655	Structure of microbial communities performing the simultaneous reduction of Fe(II)EDTA.NO2â^and Fe(III)EDTAâ^a. Applied Microbiology and Biotechnology, 2006, 73, 922-931.	3.6	11
656	Nitrate-dependent [Fe(II)EDTA]2â^ oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Systematic and Applied Microbiology, 2006, 29, 276-286.	2.8	104
657	Monoliths as Biocatalytic Reactors: Smart Gasâ€"Liquid Contacting for Process Intensification. ChemInform, 2006, 37, no.	0.0	0
658	Potential application of monolith packed columns as bioreactors, control of biofilm formation. Biotechnology and Bioengineering, 2006, 93, 238-245.	3.3	29
659	Modeling product formation in anaerobic mixed culture fermentations. Biotechnology and Bioengineering, 2006, 93, 592-606.	3.3	196
660	Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth. Biotechnology and Bioengineering, 2006, 94, 43-53.	3.3	62
661	Experimental evaluation of starch utilization mechanism by activated sludge. Biotechnology and Bioengineering, 2006, 93, 964-970.	3.3	36
662	Determination of the decay rate of nitrifying bacteria. Biotechnology and Bioengineering, 2006, 94, 252-262.	3.3	79
663	Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnology and Bioengineering, 2006, 94, 961-979.	3.3	164
664	Integration of Processes to Treat Wastewater and Source-Separated Urine. Journal of Environmental Engineering, ASCE, 2006, 132, 331-341.	1.4	83
665	Variable stoichiometry with thermodynamic control in ADM1. Water Science and Technology, 2006, 54, 101-110.	2.5	47
666	Critical analysis of some concepts proposed in ADM1. Water Science and Technology, 2006, 54, 51-57.	2.5	48

#	Article	IF	CITATIONS
667	Nitrification Activities in Full-scale Treatment Plants with Varying Salt Loads. Environmental Technology (United Kingdom), 2006, 27, 635-643.	2.2	22
668	Waste characterization for implementation in ADM1. Water Science and Technology, 2006, 54, 167-174.	2.5	69
669	rRNA and Poly-Î ² -Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles. Applied and Environmental Microbiology, 2006, 72, 2322-2330.	3.1	23
670	Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions, 2006, 34, 174-178.	3.4	77
671	1994–2004: 10Âyears of research on the anaerobic oxidation of ammonium. Biochemical Society Transactions, 2005, 33, 119-123.	3.4	163
672	Biofilm growth pattern in honeycomb monolith packings: Effect of shear rate and substrate transport limitations. Catalysis Today, 2005, 105, 448-454.	4.4	39
673	A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environmental Microbiology, 2005, 7, 1085-1103.	3.8	197
674	High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material. Biotechnology and Bioengineering, 2005, 90, 462-472.	3.3	37
675	Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 2005, 90, 761-769.	3.3	507
676	A general description of detachment for multidimensional modelling of biofilms. Biotechnology and Bioengineering, 2005, 91, 651-669.	3.3	128
677	Rate based modeling of a sulfite reduction bioreactor. AICHE Journal, 2005, 51, 1429-1439.	3.6	3
678	Model-based evaluation of oxygen consumption in a partial nitrification–Anammox biofilm process. Water Science and Technology, 2005, 52, 155-160.	2.5	18
679	Evaluation of separate urine collection and treatment to augment existing wastewater treatment works. Water Science and Technology, 2005, 52, 71-80.	2.5	4
680	Coupling the SHARON process with Anammox: Model-based scenario analysis with focus on operating costs. Water Science and Technology, 2005, 52, 107-115.	2.5	21
681	SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality. Water Science and Technology, 2005, 52, 55-62.	2.5	25
682	Multidimensional modelling of anaerobic granules. Water Science and Technology, 2005, 52, 501-507.	2.5	31
683	Boosting nitrification with the BABE technology. Water Science and Technology, 2005, 52, 63-70.	2.5	69
684	Characterization of Microbial Communities Removing Nitrogen Oxides from Flue Gas: the BioDeNOx Process. Applied and Environmental Microbiology, 2005, 71, 6345-6352.	3.1	37

#	Article	IF	CITATIONS
685	Modeling biofilm and floc diffusion processes based on analytical solution of reaction-diffusion equations. Water Research, 2005, 39, 1311-1323.	11.3	105
686	Monoliths as Biocatalytic Reactors:Â Smart Gasâ^'Liquid Contacting for Process Intensification. Industrial & Samp; Engineering Chemistry Research, 2005, 44, 9646-9652.	3.7	34
687	Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study. Microbiology (United Kingdom), 2005, 151, 3817-3832.	1.8	175
688	Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research, 2005, 39, 2676-2686.	11.3	198
689	Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Research, 2005, 39, 4476-4484.	11.3	217
690	Modelling nitrification, heterotrophic growth and predation in activated sludge. Water Research, 2005, 39, 5080-5098.	11.3	119
691	Multidimensional modelling of anaerobic granules. Water Science and Technology, 2005, 52, 501-7.	2.5	6
692	SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality. Water Science and Technology, 2005, 52, 55-62.	2.5	3
693	Results from the multi-species Benchmark Problem (BM3) using one-dimensional models. Water Science and Technology, 2004, 49, 163-168.	2.5	24
694	The effect of anoxic selectors on sludge bulking. Water Science and Technology, 2004, 50, 261-268.	2.5	7
695	Modelling a spatially heterogeneous biofilm and the bulk fluid: selected results from Benchmark Problem 2 (BM2). Water Science and Technology, 2004, 49, 155-162.	2.5	18
696	Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water Science and Technology, 2004, 49, 177-185.	2.5	31
697	Use of Anammox in urban wastewater treatment. Water Science and Technology: Water Supply, 2004, 4, 87-94.	2.1	26
698	Full-scale application of the BABE® technology. Water Science and Technology, 2004, 50, 87-96.	2.5	43
699	Model-based evaluation of nitrogen removal in a tannery wastewater treatment plant. Water Science and Technology, 2004, 50, 251-260.	2.5	11
700	Comparing biofilm models for a single species biofilm system. Water Science and Technology, 2004, 49, 145-154.	2.5	31
701	Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science and Technology, 2004, 49, 9-17.	2.5	382
702	Aerobic granular sludge technology: an alternative to activated sludge?. Water Science and Technology, 2004, 49, 1-7.	2.5	175

#	Article	IF	Citations
703	Model-based evaluation of COD influence on a partial nitrification-Anammox biofilm (CANON) process. Water Science and Technology, 2004, 49, 83-90.	2.5	53
704	Advances in mathematical modeling of biofilm structure. Biofilms, 2004, 1, 337-349.	0.6	41
705	A modelling study of the activity and structure of biofilms in biological reactors. Biofilms, 2004, 1, 377-391.	0.6	31
706	Particle-Based Multidimensional Multispecies Biofilm Model. Applied and Environmental Microbiology, 2004, 70, 3024-3040.	3.1	273
707	Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnology Advances, 2004, 22, 261-279.	11.7	348
708	Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Reviews in Environmental Science and Biotechnology, 2004, 3, 255-264.	8.1	71
709	Bulking sludge in biological nutrient removal systems. Biotechnology and Bioengineering, 2004, 86, 125-135.	3.3	62
710	Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling and Software, 2004, 19, 763-783.	4.5	388
711	Effects of Separate Urine Collection on Advanced Nutrient Removal Processes. Environmental Science & E	10.0	62
712	Three-Dimensional Dual-Morphotype Species Modeling of Activated Sludge Flocs. Environmental Science &	10.0	53
713	Filamentous bulking sludge—a critical review. Water Research, 2004, 38, 793-817.	11.3	464
714	Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research, 2004, 38, 3760-3768.	11.3	192
715	Aerobic granular sludge technology: an alternative to activated sludge?. Water Science and Technology, 2004, 49, 1-7.	2.5	42
716	Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science and Technology, 2004, 49, 9-17.	2.5	48
717	Model-based evaluation of COD influence on a partial nitrification-Anammox biofilm (CANON) process. Water Science and Technology, 2004, 49, 83-90.	2.5	13
718	Comparing biofilm models for a single species biofilm system. Water Science and Technology, 2004, 49, 145-54.	2.5	12
719	The effect of anoxic selectors on sludge bulking. Water Science and Technology, 2004, 50, 261-8.	2.5	2
720	Improved method for determination of ammonia and nitrite oxidation activities in mixed bacterial cultures. Applied Microbiology and Biotechnology, 2003, 63, 217-221.	3.6	43

#	Article	IF	Citations
721	Effect of dissolved oxygen concentration on sludge settleability. Applied Microbiology and Biotechnology, 2003, 62, 586-593.	3.6	101
722	Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles, 2003, 7, 195-203.	2.3	57
723	Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess and Biosystems Engineering, 2003, 25, 377-385.	3.4	247
724	Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnology and Bioengineering, 2003, 81, 92-105.	3.3	251
725	Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions. Chemical Engineering Science, 2003, 58, 417-427.	3.8	47
726	Rate-based modelling of SO2 absorption into aqueous NaHCO3/Na2CO3 solutions accompanied by the desorption of CO2. Chemical Engineering Science, 2003, 58, 3589-3600.	3.8	78
727	Degradation of polymers in a biofilm airlift suspension reactor. Water Research, 2003, 37, 485-492.	11.3	32
728	Bio-augmentation by nitrification with return sludge. Water Research, 2003, 37, 1794-1804.	11.3	57
729	Study on the use of NADH fluorescence measurements for monitoring wastewater treatment systems. Water Research, 2003, 37, 2732-2738.	11.3	45
730	Effect of feeding pattern and storage on the sludge settleability under aerobic conditions. Water Research, 2003, 37, 2555-2570.	11.3	146
731	Respirometric measurement of kinetic parameters: effect of activated sludge floc size. Water Science and Technology, 2003, 48, 61-68.	2.5	171
732	A proposed sustainable BNR plant with the emphasis on recovery of COD and phosphate. Water Science and Technology, 2003, 48, 77-85.	2.5	45
733	Impact of separate urine collection on wastewater treatment systems. Water Science and Technology, 2003, 48, 103-110.	2.5	77
734	From waste treatment to integrated resource management. Water Science and Technology, 2003, 48, 1-9.	2.5	42
735	Modification of Activated Sludge Model no. 3 considering direct growth on primary substrate. Water Science and Technology, 2003, 47, 219-225.	2.5	48
736	Modification of Activated Sludge Model no. 3 considering direct growth on primary substrate. Water Science and Technology, 2003, 47, 219-25.	2.5	9
737	A Mathematical Model for Initiation of Microbiologically Influenced Corrosion by Differential Aeration [Journal of The Electrochemical Society, 149, B211 (2002)]. Journal of the Electrochemical Society, 2002, 149, L6.	2.9	0
738	Experimental Assessment of Bacterial Storage Yield. Journal of Environmental Engineering, ASCE, 2002, 128, 1030-1035.	1.4	24

#	Article	IF	Citations
739	A Mathematical Model for Initiation of Microbiologically Influenced Corrosion by Differential Aeration. Journal of the Electrochemical Society, 2002, 149, B211.	2.9	24
740	Aerobic granulation in a sequencing batch airlift reactor. Water Research, 2002, 36, 702-712.	11.3	365
741	Poly- \hat{l}^2 -hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 2002, 36, 1167-1180.	11.3	227
742	Modelling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP. Water Research, 2002, 36, 4667-4682.	11.3	42
743	Model-based evaluation of temperature and inflow variations on a partial nitrification–ANAMMOX biofilm process. Water Research, 2002, 36, 4839-4849.	11.3	187
744	A practical protocol for dynamic modelling of activated sludge systems. Water Science and Technology, 2002, 45, 127-136.	2.5	123
745	Respirometric assessment of storage yield for different substrates. Water Science and Technology, 2002, 46, 345-352.	2.5	34
746	Gas chromatographic analysis of polyhydroxybutyrate in activated sludge: a round-robin test. Water Science and Technology, 2002, 46, 357-361.	2.5	22
747	Model-based evaluation of a new upgrading concept for N-removal. Water Science and Technology, 2002, 45, 169-176.	2.5	55
748	Quantifying the impact of wastewater micronutrient composition on in situ growth activity of Acinetobacter spp Water Science and Technology, 2002, 46, 443-447.	2.5	13
749	Experimental assessment and modelling of nitrate utilisation for primary sludge. Water Science and Technology, 2002, 46, 313-317.	2.5	0
750	Error diagnostics and data reconciliation for activated sludge modelling using mass balances. Water Science and Technology, 2002, 45, 145-156.	2.5	51
751	Modelling of activated sludge processes with structured biomass. Water Science and Technology, 2002, 45, 13-23.	2.5	46
752	Experience with guidelines for wastewater characterisation in The Netherlands. Water Science and Technology, 2002, 45, 77-87.	2.5	230
753	Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnology and Bioengineering, 2002, 77, 266-277.	3.3	216
754	Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions. Biotechnology and Bioengineering, 2002, 80, 277-279.	3.3	67
755	Improved nitrogen removal by application of new nitrogen-cycle bacteria. Reviews in Environmental Science and Biotechnology, 2002, 1, 51-63.	8.1	88
756	Title is missing!. Hydrobiologia, 2002, 469, 165-178.	2.0	12

#	Article	IF	CITATIONS
757	Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek, 2002, 81, 245-256.	1.7	170
758	Modelling of activated sludge processes with structured biomass. Water Science and Technology, 2002, 45, 13-23.	2.5	1
759	Storage and degradation of poly- \hat{l}^2 -hydroxybutyrate in activated sludge under aerobic conditions. Water Research, 2001, 35, 2277-2285.	11.3	72
760	Simultaneous storage and degradation of phb and glycogen in activated sludge cultures. Water Research, 2001, 35, 2693-2701.	11.3	78
761	Metabolic modelling of full-scale biological nitrogen and phosphorus removing wwtp's. Water Research, 2001, 35, 2711-2723.	11.3	95
762	Model-based evaluation of two BNR processesâ€"UCT and A2N. Water Research, 2001, 35, 2851-2860.	11.3	46
763	Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Science and Technology, 2001, 43, 127-134.	2.5	144
764	A New Deterministic Spatio-Temporal Continuum Model for Biofilm Development. Journal of Theoretical Medicine, 2001, 3, 161-175.	0.5	153
765	Individual-based modelling of biofilms. Microbiology (United Kingdom), 2001, 147, 2897-2912.	1.8	360
766	Microbiology and application of the anaerobic ammonium oxidation (†anammox†) process. Current Opinion in Biotechnology, 2001, 12, 283-288.	6.6	534
767	Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnology and Bioengineering, 2001, 72, 205-218.	3.3	299
768	Glycogen metabolism in aerobic mixed cultures. Biotechnology and Bioengineering, 2001, 73, 85-94.	3.3	82
769	N-Removal in a granular sludge sequencing batch airlift reactor. Biotechnology and Bioengineering, 2001, 75, 82-92.	3.3	177
770	Enhancement of organophosphorus hydrolase yield in Escherichia coli using multiple gene fusions. Biotechnology and Bioengineering, 2001, 75, 100-103.	3.3	28
771	Model-Based Evaluation of Denitrifying P Removal in a Two-Sludge System. Journal of Environmental Engineering, ASCE, 2001, 127, 112-118.	1.4	15
772	Two-dimensional model of biofilm detachment caused by internal stress from liquid flow., 2001, 72, 205.		2
773	Twoâ€dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnology and Bioengineering, 2001, 72, 205-218.	3.3	7
774	Poly-Î ² -hydroxyalkanoate metabolism in activated sludge. , 2001, , 239-248.		0

#	Article	IF	Citations
775	A metabolic model for biological phosphorus removal by denitrifying organisms., 2000, 52, 685-695.		116
776	Stoichiometry and kinetics of poly- \hat{l}^2 -hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures. Biotechnology and Bioengineering, 2000, 67, 379-389.	3.3	179
777	A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnology and Bioengineering, 2000, 68, 355-369.	3.3	135
778	Stoichiometry and kinetics of poly- \hat{l}^2 -hydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures. , 2000, 68, 496-507.		108
779	Effect of diffusive and convective substrate transport on biofilm structure formation: A two-dimensional modeling study. Biotechnology and Bioengineering, 2000, 69, 504-515.	3.3	224
780	A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chemical Engineering Science, 2000, 55, 6209-6222.	3.8	131
781	The biofilm airlift suspension extension reactor – II: Three-phase hydrodynamics. Chemical Engineering Science, 2000, 55, 699-711.	3.8	17
782	Particle-based biofilm reactor technology. Trends in Biotechnology, 2000, 18, 312-320.	9.3	136
783	Biofilm models for the practitioner. Water Science and Technology, 2000, 41, 509-512.	2.5	37
784	Integration of nitrification and denitrification in biofilm airlift suspension reactors. Water Science and Technology, 2000, 41, 97-103.	2.5	16
785	Modelling and predicting biofilm structure. , 2000, , 129-166.		16
786	Influence of different substrates on the formation of biofilms in a biofilm airlift suspension reactor. Water Science and Technology, 2000, 41, 323-330.	2.5	28
787	Modeling of Energy Spilling in Substrate-Sufficient Cultures. Journal of Environmental Engineering, ASCE, 2000, 126, 979-980.	1.4	4
788	Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder. Water Research, 2000, 34, 846-858.	11.3	118
789	Wastewater treatment with particulate biofilm reactors. Journal of Biotechnology, 2000, 80, 1-33.	3.8	389
790	A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. , 2000, 68, 355.		1
791	Effect of diffusive and convective substrate transport on biofilm structure formation: A two-dimensional modeling study., 2000, 69, 504.		2
792	Discrete-differential modelling of biofilm structure. Water Science and Technology, 1999, 39, 115-122.	2.5	63

#	Article	lF	Citations
793	Activated Sludge Model No. 3. Water Science and Technology, 1999, 39, 183-193.	2.5	354
794	Temperature effects in bio-P removal. Water Science and Technology, 1999, 39, 215-225.	2.5	14
795	Innovative methods for sludge characterization in biological phosphorus removal systems. Water Science and Technology, 1999, 39, 37-43.	2.5	26
796	Activated Sludge Model No.2d, ASM2D. Water Science and Technology, 1999, 39, 165-182.	2.5	637
797	Maintenance, endogeneous respiration, lysis, decay and predation. Water Science and Technology, 1999, 39, 107-117.	2.5	127
798	Identification of mass transfer parameters in three-phase biofilm reactors. Chemical Engineering Science, 1999, 54, 3143-3152.	3.8	12
799	The biofilm airlift suspension extension reactor. Part I: Design and two-phase hydrodynamics. Chemical Engineering Science, 1999, 54, 1909-1924.	3.8	24
800	Bubble recirculation regimes in an internal-loop airlift reactor. Chemical Engineering Science, 1999, 54, 3995-4006.	3.8	76
801	Maintenance, endogeneous respiration, lysis, decay and predation. Water Science and Technology, 1999, 39, 107.	2.5	120
802	Activated Sludge Model No. 3. Water Science and Technology, 1999, 39, 183.	2.5	759
803	Temperature effects in bio-P removal. Water Science and Technology, 1999, 39, 215.	2.5	4
804	Activated Sludge Model No.2d, ASM2d. Water Science and Technology, 1999, 39, 165.	2.5	273
805	Analysis and design of suitable model structures for activated sludge tanks with circulating flow. Water Science and Technology, 1999, 39, 55.	2.5	12
806	Coping with ever larger problems, models, and data bases. Water Science and Technology, 1999, 39, 1.	2.5	22
807	Innovative methods for sludge characterization in biological phosphorus removal systems. Water Science and Technology, 1999, 39, 37.	2.5	13
808	Discrete-differential modelling of biofilm structure. Water Science and Technology, 1999, 39, 115.	2.5	53
809	Model Based Design of a Novel Process for Nitrogen Removal from Concentrated Flows. Mathematical and Computer Modelling of Dynamical Systems, 1999, 5, 351-371.	2,2	198
810	Effect of temperature on storage polymers and settleability of activated sludge. Water Research, 1999, 33, 2374-2382.	11.3	143

#	Article	IF	CITATIONS
811	Aerobic granulation in a sequencing batch reactor. Water Research, 1999, 33, 2283-2290.	11.3	663
812	Substrate flux into storage and growth in relation to activated sludge modeling. Water Research, 1999, 33, 3149-3161.	11.3	122
813	Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Research, 1999, 33, 3459-3468.	11.3	126
814	Model based evaluation of plant improvement strategies for biological nutrient removal. Water Science and Technology, 1999, 39, 45-53.	2.5	1
815	Mass transfer and reaction in a biofilm airlift suspension reactor. Chemical Engineering Science, 1998, 53, 2743-2753.	3.8	46
816	Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiology Ecology, 1998, 27, 239-249.	2.7	45
817	The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1998, 22, 421-437.	8.6	660
818	Bioassay for glycogen determination in biological phosphorus removal systems. Water Science and Technology, 1998, 37, 541.	2.5	11
819	The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 1998, 37, 135.	2.5	420
820	Upgrading of waste water treatment processes for integrated nutrient removal â€" The BCFS process. Water Science and Technology, 1998, 37, 209.	2.5	36
821	Microbiological conversions in nitrogen removal. Water Science and Technology, 1998, 38, 1.	2.5	95
822	A new combined differential-discrete cellular automaton approach for biofilm modeling: Application for growth in gel beads. Biotechnology and Bioengineering, 1998, 57, 718-731.	3.3	180
823	Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnology and Bioengineering, 1998, 58, 101-116.	3.3	402
824	Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor., 1998, 58, 400-407.		198
825	Minimal aerobic sludge retention time in biological phosphorus removal systems. , 1998, 60, 326-332.		36
826	Hydrodynamic characteristics and gas–liquid mass transfer in a biofilm airlift suspension reactor. , 1998, 60, 627-635.		20
827	Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus-accumulating microorganisms. Applied Microbiology and Biotechnology, 1998, 50, 273-276.	3.6	42
828	IMPACT OF EXCESSIVE AERATION ON BIOLOGICAL PHOSPHORUS REMOVAL FROM WASTEWATER. Water Research, 1998, 32, 200-208.	11.3	145

#	Article	IF	Citations
829	Influence of temperature on biological phosphorus removal: process and molecular ecological studies. Water Research, 1998, 32, 1035-1048.	11.3	98
830	Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat. Water Research, 1998, 32, 2009-2018.	11.3	32
831	Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research, 1998, 32, 3193-3207.	11.3	845
832	Nitrogen Removal in Intermittently Aerated Biofilm Airlift Reactor. Journal of Environmental Engineering, ASCE, 1998, 124, 239-248.	1.4	20
833	Closure to "Environmental Impacts of Nutrient Removal Processes: Case Study―by Mark C. M. van Loosdrecht and Henry M. van Veldhuizen. Journal of Environmental Engineering, ASCE, 1998, 124, 482-483.	1.4	0
834	The sharon process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 1998, 37, 135-142.	2.5	440
835	Upgrading of waste water treatment processes for integrated nutrient removal-the BCFS \hat{A}^{\otimes} process. Water Science and Technology, 1998, 37, 209-217.	2.5	68
836	Microbiological conversions in nitrogen removal. Water Science and Technology, 1998, 38, 1-7.	2.5	174
837	Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach., 1998, 58, 101.		10
838	Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor. Biotechnology and Bioengineering, 1998, 58, 400-407.	3.3	4
839	The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1998, 22, 421-437.	8.6	25
840	Bioassay for glycogen determination in biological phosphorus removal systems. Water Science and Technology, 1998, 37, 541-547.	2.5	6
841	Environmental Impacts of Nutrient Removal Processes: Case Study. Journal of Environmental Engineering, ASCE, 1997, 123, 33-40.	1.4	32
842	Temperature Effects on Physiology of Biological Phosphorus Removal. Journal of Environmental Engineering, ASCE, 1997, 123, 144-153.	1.4	92
843	A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Research, 1997, 31, 471-478.	11.3	156
844	Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Research, 1997, 31, 777-786.	11.3	161
845	Kinetics and stoichiometry in the biological phosphorus removal process with short cycle times. Water Research, 1997, 31, 918-928.	11.3	27
846	Aerobic granular sludge in a sequencing batch reactor. Water Research, 1997, 31, 3191-3194.	11.3	499

#	Article	IF	CITATIONS
847	Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant. Water Science and Technology, 1997, 36, 75-82.	2.5	19
848	Process design for nitrogen removal using nitrifying biofilm and denitrifying suspended growth in a biofilm airlift suspension reactor. Water Science and Technology, 1997, 36, 119-128.	2.5	31
849	Towards a more sustainable municipal wastewater treatment system. Water Science and Technology, 1997, 35, 171-180.	2.5	294
850	Importance of bacterial storage polymers in bioprocesses. Water Science and Technology, 1997, 35, 41-47.	2.5	355
851	Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Science and Technology, 1997, 36, 147-156.	2.5	145
852	Importance of bacterial storage polymers in bioprocesses. Water Science and Technology, 1997, 35, 41.	2.5	115
853	Towards a more sustainable municipal wastewater treatment system. Water Science and Technology, 1997, 35, 171.	2.5	206
854	Biofilm abrasion by particle collisions in airlift reactors. Water Science and Technology, 1997, 36, 221.	2.5	2
855	Process design for nitrogen removal using nitrifying biofilm and denitrifying suspended growth in a Biofilm Airlift Suspension reactor. Water Science and Technology, 1997, 36, 119.	2.5	18
856	Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Science and Technology, 1997, 36, 147.	2.5	52
857	Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant. Water Science and Technology, 1997, 36, 75.	2.5	39
858	Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek, 1997, 71, 75-93.	1.7	167
859	Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater. Use of dynamic enrichment cultures. Antonie Van Leeuwenhoek, 1997, 71, 109-116.	1.7	59
860	Biological phosphate removal processes. Applied Microbiology and Biotechnology, 1997, 48, 289-296.	3.6	146
861	A more unifying hypothesis for biofilm structures. FEMS Microbiology Ecology, 1997, 24, 181-183.	2.7	74
862	Abrasion of suspended biofilm pellets in airlift reactors: Importance of shape, structure, and particle concentrations., 1997, 53, 88-99.		53
863	Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering, 1997, 53, 168-178.	3.3	220
864	Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor., 1997, 53, 397-405.		60

#	Article	IF	Citations
865	An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal., 1997, 54, 434-450.		170
866	Abrasion of suspended biofilm pellets in airlift reactors: Effect of particle size., 1997, 55, 206-215.		28
867	Kinetic modeling of poly (\hat{l}^2 -hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply., 1997, 55, 773-782.		123
868	Adhesion and biofilm development on suspended carriers in airlift reactors: Hydrodynamic conditions versus surface characteristics., 1997, 55, 880-889.		46
869	Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor., 1997, 53, 168.		1
870	Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering, 1997, 53, 168-178.	3.3	2
871	ON THE MEASUREMENT OF THE FLOCCULATION CHARACTERISTICS OF BREWERS' YEAST. Journal of the Institute of Brewing, 1996, 102, 333-342.	2.3	10
872	Model for Microbial Degradation of Nonpolar Organic Contaminants in a Soil Slurry Reactor. Environmental Science & Environment	10.0	27
873	Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research, 1996, 30, 1702-1710.	11.3	362
874	The dynamic effects of potassium limitation on biological phosphorus removal. Water Research, 1996, 30, 2323-2328.	11.3	51
875	Steady-state analysis to evaluate the phosphate removal capacity and acetate requirement of biological phosphorus removing mainstream and sidestream process configurations. Water Research, 1996, 30, 2748-2760.	11.3	36
876	Influence of detachment, substrate loading and reactor scale on the formation of biofilms in airlift reactors. Applied Microbiology and Biotechnology, 1996, 45, 7-17.	3.6	83
877	Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria. Water Science and Technology, 1996, 34, 33-40.	2.5	88
878	The potential of off-gas analyses for monitoring wastewater treatment plants. Water Science and Technology, 1996, 33, 13-23.	2. 5	15
879	The potential of off-gas analyses for monitoring wastewater treatment plants. Water Science and Technology, 1996, 33, 13.	2.5	7
880	Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria. Water Science and Technology, 1996, 34, 33.	2.5	27
881	Biodegradability of diesel oil. Biodegradation, 1996, 7, 73-81.	3.0	60
882	Microbial Decontamination of Polluted Soil in a Slurry Process. Journal of Environmental Engineering, ASCE, 1996, 122, 975-982.	1.4	11

#	Article	IF	CITATIONS
883	A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnology and Bioengineering, 1996, 52, 685-695.	3.3	50
884	Dynamics of biofilm detachment in biofilm airlift suspension reactors. Biotechnology and Bioengineering, 1995, 45, 481-487.	3.3	42
885	Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors. Biotechnology and Bioengineering, 1995, 46, 258-269.	3.3	74
886	A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnology and Bioengineering, 1995, 47, 277-287.	3.3	190
887	Formation of nitrifying biofilms on small suspended particles in airlift reactors. Biotechnology and Bioengineering, 1995, 47, 585-595.	3.3	64
888	A metabolic model of the biological phosphorus removal process: I. Effect of the sludge retention time. Biotechnology and Bioengineering, 1995, 48, 222-233.	3.3	84
889	A metabolic model of the biological phosphorus removal process: II. Validation during start-up conditions. Biotechnology and Bioengineering, 1995, 48, 234-245.	3.3	21
890	Population distribution in aerobic biofilms on small suspended particles. Water Science and Technology, 1995, 31, 163.	2.5	30
891	A metabolic model for the biological phosphorus removal process. Water Science and Technology, 1995, 31, 79.	2.5	37
892	Biofilm structures. Water Science and Technology, 1995, 32, 35.	2.5	115
893	Solids retention time in heterotrophic and nitrifying biofilms in a biofilm airlift suspension reactor. Water Science and Technology, 1995, 32, 53.	2.5	9
894	Population distribution in aerobic biofilms on small suspended particles. Water Science and Technology, 1995, 31, 163-171.	2.5	53
895	Solids retention time in heterotrophic and nitrifying biofilms in a biofilm airlift suspension reactor. Water Science and Technology, 1995, 32, 53-60.	2.5	26
896	A metabolic model for the biological phosphorus removal process. Water Science and Technology, 1995, 31, 79-93.	2.5	75
897	Biofilm structures. Water Science and Technology, 1995, 32, 35-43.	2.5	148
898	pH: Keyfactor in the Biological Phosphorus Removal Process. Water Science and Technology, 1994, 29, 71-74.	2.5	24
899	Effect of nitrate on phosphorus release in biological phosphorus removal systems. Water Science and Technology, 1994, 30, 263-269.	2.5	173
900	Dynamics of population and biofilm structure in the biofilm airlift suspension reactor for carbon and nitrogen removal. Water Science and Technology, 1994, 29, 377-384.	2.5	37

#	Article	IF	Citations
901	How important is the physicochemical interaction in the flocculation of yeast cells?. Colloids and Surfaces B: Biointerfaces, 1994, 2, 165-171.	5.0	15
902	Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnology and Bioengineering, 1994, 43, 461-470.	3.3	733
903	Heterogeneity of biofilms in rotating annular reactors: Occurrence, structure, and consequences. Biotechnology and Bioengineering, 1994, 44, 194-204.	3.3	95
904	Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnology and Bioengineering, 1994, 44, 595-608.	3.3	204
905	Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnology and Bioengineering, 1994, 44, 837-848.	3.3	368
906	Solids retention time in spherical biofilms in a biofilm airlift suspension reactor. Biotechnology and Bioengineering, 1994, 44, 867-879.	3.3	61
907	A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnology and Bioengineering, 1993, 42, 509-519.	3.3	245
908	On-line measurement of Brewer's yeast flocculation during fermentation. Biotechnology Letters, 1993, 7, 651-656.	0.5	4
909	Biofilm bioreactors for waste-water treatment. Trends in Biotechnology, 1993, 11, 117-121.	9.3	86
910	Biological Phosphorus Removal from Wastewater by Anaerobic-Anoxic Sequencing Batch Reactor. Water Science and Technology, 1993, 27, 241-252.	2.5	284
911	Development and Scale-Up of an Aerobic Biofilm Air-Lift Suspension Reactor. Water Science and Technology, 1993, 27, 253-261.	2.5	46
912	Nitrification with Biofilms on Small Suspended Particles in Airlift Reactors. Water Science and Technology, 1992, 26, 2207-2211.	2.5	14
913	Formation of Biofilms in a Biofilm Air-Lift Suspension Reactor. Water Science and Technology, 1992, 26, 647-654.	2.5	49
914	Formation of Biofilms on Small Suspended Particles in Airlift Reactors. Water Science and Technology, 1992, 26, 2015-2019.	2.5	12
915	A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation. Biotechnology and Bioengineering, 1992, 40, 1139-1154.	3.3	119
916	Energetics of bacterial adhesion. Experientia, 1990, 46, 817-822.	1.2	52
917	Hydrophobic and electrostatic parameters in bacterial adhesion. Aquatic Sciences, 1990, 52, 103-114.	1.5	223
918	Physical Chemical Description of Bacterial Adhesion. Journal of Biomaterials Applications, 1990, 5, 91-106.	2.4	114

#	Article	IF	CITATIONS
919	Mutational changes in physiochemical cell surface properties of plant-growth-stimulating Pseudomonas spp. do not influence the attachment properties of the cells. Journal of Bacteriology, 1989, 171, 2756-2761.	2.2	39
920	Bacterial adhesion: A physicochemical approach. Microbial Ecology, 1989, 17, 1-15.	2.8	466
921	Adhesion of bacteria to polystyrene surfaces. Colloids and Surfaces, 1989, 39, 175-187.	0.9	28
922	Isolation and characterization of mutants of Rhizobium leguminosarum bv. viciae 248 with altered lipopolysaccharides: possible role of surface charge or hydrophobicity in bacterial release from the infection thread. Journal of Bacteriology, 1989, 171, 1143-1150.	2.2	104
923	Microbial degradation of nitrilotriacetate (NTA) during river water/groundwater infiltration: Laboratory column studies. Water Research, 1987, 21, 1237-1248.	11.3	31
924	The role of bacterial cell wall hydrophobicity in adhesion. Applied and Environmental Microbiology, 1987, 53, 1893-1897.	3.1	809
925	Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Applied and Environmental Microbiology, 1987, 53, 1898-1901.	3.1	658
926	Some Physiological Characteristics of Acinetobacter spp. Accumulating Large Amounts of Phosphate. Water Science and Technology, 1985, 17, 119-125.	2.5	113
927	Polyhydroalkanoates (PHAs) Production from Saponified Sunflower Oil in Mixed Cultures under Aerobic Condition. Jurnal Teknologi (Sciences and Engineering), 0, , .	0.4	4
928	Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control. , 0, 68, 1-11.		19
929	Application of DBNPA dosage for biofouling control in spiral wound membrane systems. , 0, 68, 12-22.		24
930	Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms. , 0, 80, 1 -10.		2
931	Applicability of short-term accelerated biofouling studies to predict long-term biofouling accumulation in reverse osmosis membrane systems. , 0, 97, 72-78.		14
932	The membrane fouling simulator: development, application, and early-warning of biofouling in RO treatment., 0, 126, 1-23.		7
933	What Makes Cow-Dung Stabilised Earthen Block Water-Resistant. , 0, , .		5
934	Biological Stabilisers in Earthen Construction: A Mechanistic Understanding of their Response to Water-Ingress. , 0 , , .		4