Toby James Gibson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7495483/publications.pdf

Version: 2024-02-01

45 papers

17,530 citations

30 h-index 243296 44 g-index

46 all docs

46 docs citations

46 times ranked

33397 citing authors

#	Article	IF	CITATIONS
1	The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Research, 2022, 50, D497-D508.	6.5	144
2	PCARE requires coiled coil, RP62 kinase-binding and EVH1 domain-binding motifs for ciliary expansion. Human Molecular Genetics, 2022, 31, 2560-2570.	1.4	3
3	Divergent Evolution of a Protein–Protein Interaction Revealed through Ancestral Sequence Reconstruction and Resurrection. Molecular Biology and Evolution, 2021, 38, 152-167.	3.5	8
4	Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Science Signaling, 2021, 14 , .	1.6	61
5	PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Research, 2021, 49, D404-D411.	6.5	95
6	ELMâ€"the eukaryotic linear motif resource in 2020. Nucleic Acids Research, 2020, 48, D296-D306.	6.5	195
7	Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends in Biochemical Sciences, 2020, 45, 526-544.	3.7	33
8	How to Annotate and Submit a Short Linear Motif to the Eukaryotic Linear Motif Resource. Methods in Molecular Biology, 2020, 2141, 73-102.	0.4	3
9	CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS ONE, 2019, 14, e0216705.	1.1	104
10	An intrinsically disordered proteins community for ELIXIR. F1000Research, 2019, 8, 1753.	0.8	12
11	Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity. Protein Engineering, Design and Selection, 2018, 31, 69-77.	1.0	33
12	The eukaryotic linear motif resource – 2018 update. Nucleic Acids Research, 2018, 46, D428-D434.	6. 5	183
13	Control of mitotic chromosome condensation by the fission yeast transcription factor Zas1. Journal of Cell Biology, 2018, 217, 2383-2401.	2.3	3
14	Degrons in cancer. Science Signaling, 2017, 10, .	1.6	100
15	Intermolecular base stacking mediates RNA-RNA interaction in a crystal structure of the RNA chaperone Hfq. Scientific Reports, 2017, 7, 9903.	1.6	14
16	CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals. Cell Systems, 2017, 5, 628-637.e6.	2.9	80
17	Exploring Short Linear Motifs Using the ELM Database and Tools. Current Protocols in Bioinformatics, 2017, 58, 8.22.1-8.22.35.	25.8	23
18	The Gene Ontology of eukaryotic cilia and flagella. Cilia, 2017, 6, 10.	1.8	6

#	Article	IF	CITATIONS
19	Hunting for Cis-Regulatory Elements in Proteins. Cell Systems, 2016, 2, 68-70.	2.9	1
20	An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nature Communications, 2016, 7, 11491.	5.8	207
21	ELM 2016—data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Research, 2016, 44, D294-D300.	6.5	289
22	Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Communication and Signaling, 2015, 13, 42.	2.7	58
23	The ABBA Motif Binds APC/C Activators and Is Shared by APC/C Substrates and Regulators. Developmental Cell, 2015, 32, 358-372.	3.1	172
24	NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genetics, 2015, 11, e1005574.	1.5	23
25	Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer?. Molecular BioSystems, 2014, 10, 2626-2642.	2.9	80
26	Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems. Nature Structural and Molecular Biology, 2014, 21, 833-839.	3.6	57
27	A Million Peptide Motifs for the Molecular Biologist. Molecular Cell, 2014, 55, 161-169.	4.5	429
28	Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chemical Reviews, 2014, 114, 6733-6778.	23.0	389
29	The transience of transient overexpression. Nature Methods, 2013, 10, 715-721.	9.0	203
30	The switches.ELM Resource: A Compendium of Conditional Regulatory Interaction Interfaces. Science Signaling, 2013, 6, rs7.	1.6	101
31	Linear motifs confer functional diversity onto splice variants. Nucleic Acids Research, 2012, 40, 7123-7131.	6.5	65
32	RACK1 research – ships passing in the night?. FEBS Letters, 2012, 586, 2787-2789.	1.3	40
33	Motif switches: decision-making in cell regulation. Current Opinion in Structural Biology, 2012, 22, 378-385.	2.6	133
34	Fast, scalable generation of highâ€quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 7, 539.	3.2	12,778
35	How viruses hijack cell regulation. Trends in Biochemical Sciences, 2011, 36, 159-169.	3.7	339
36	Dimerization and Protein Binding Specificity of the U2AF Homology Motif of the Splicing Factor Puf60. Journal of Biological Chemistry, 2009, 284, 630-639.	1.6	59

#	Article	IF	CITATIONS
37	Cell regulation: determined to signal discrete cooperation. Trends in Biochemical Sciences, 2009, 34, 471-482.	3.7	162
38	Multiple Sequence Alignment Using ClustalW and ClustalX., 2003, 00, 2.3.1.		1
39	The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nature Structural Biology, 2001, 8, 626-633.	9.7	204
40	Gene2EST: a BLAST2 server for searching expressed sequence tag (EST) databases with eukaryotic gene-sized queries. Nucleic Acids Research, 2001, 29, 1272-1277.	6.5	30
41	The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Letters, 1993, 324, 361-366.	1.3	189
42	Non-muscle and smooth muscle myosin light chain kinases: no end in sight. DNA Sequence, 1993, 3, 333-335.	0.7	5
43	Base sequence discrimination by zinc-finger DNA-binding domains. Nature, 1991, 349, 175-178.	13.7	278
44	Metabolic complexity in the RNA world and implications for the origin of protein synthesis. Journal of Molecular Evolution, 1990, 30, 7-15.	0.8	53
45	DNA-binding domain ancestry. Nature, 1989, 342, 134-134.	13.7	85