
Rajinder S Dhindsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7495239/publications.pdf Version: 2024-02-01

PAUNDER S DHINDSA

#	Article	IF	CITATIONS
1	SARS-CoV2 infectivity is potentially modulated by host redox status. Computational and Structural Biotechnology Journal, 2020, 18, 3705-3711.	4.1	25
2	Signal Transduction and Gene Expression During Cold Acclimation of Alfalfa. , 2018, , 57-71.		0
3	A heatâ€activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant, Cell and Environment, 2008, 31, 218-226.	5.7	65
4	In vivo and in vitro activation of temperature-responsive plant map kinases. FEBS Letters, 2002, 531, 561-564.	2.8	37
5	Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant Journal, 2002, 31, 629-638.	5.7	328
6	Early Events During Low Temperature Signaling. , 2002, , 43-53.		10
7	Cold-activation ofBrassica napus BN115promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+influx. Plant Journal, 2001, 27, 1-12.	5.7	225
8	Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant Journal, 2000, 23, 785-794.	5.7	459
9	Phenol-Extracted Plant Proteins Can Be Renatured and Assayedin Gelfor Protein Kinase Activity. Analytical Biochemistry, 1998, 265, 183-185.	2.4	1
10	Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for coldâ€inactivation. Plant Journal, 1998, 13, 653-660.	5.7	121
11	Low temperature perception in plants: effects of cold on protein phosphorylation in cell-free extracts. FEBS Letters, 1997, 410, 206-209.	2.8	33
12	The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta, 1997, 203, 442-447.	3.2	176
13	Low Temperature Signal Transduction During Cold Acclimation of Alfalfa. , 1997, , 15-28.		3
14	Alfalfa Nuclei Contain Cold-Responsive Phosphoproteins and Accumulate Heat-Stable Proteins during Cold Treatment of Seedlings. Plant and Cell Physiology, 1996, 37, 1204-1210.	3.1	15
15	Low-Temperature Signal Transduction: Induction of Cold Acclimation-Specific Genes of Alfalfa by Calcium at 25 degrees C. Plant Cell, 1995, 7, 321.	6.6	13
16	Low Temperature Signal Transduction, Gene Expression, And Cold Acclimation: Multiple Roles of Low Temperature. , 1994, , 501-514.		2
17	Cloning, Characterization, and Expression of a cDNA Encoding a 50-Kilodalton Protein Specifically Induced by Cold Acclimation in Wheat. Plant Physiology, 1992, 99, 1381-1387.	4.8	218
18	A molecular marker to select for freezing tolerance in Gramineae. Molecular Genetics and Genomics, 1992, 234, 43-48.	2.4	121

RAJINDER S DHINDSA

#	Article	IF	CITATIONS
19	Drought Stress, Enzymes of Glutathione Metabolism, Oxidation Injury, and Protein Synthesis in Tortula ruralis. Plant Physiology, 1991, 95, 648-651.	4.8	138
20	Altered protein synthesis during in situ oat leaf senescence. Physiologia Plantarum, 1990, 80, 619-623.	5.2	11
21	Altered protein synthesis during in situ oat leaf senescence. Physiologia Plantarum, 1990, 80, 619-623.	5.2	5
22	Molecular Cloning and Relationship to Freezing Tolerance of Cold-Acclimation-Specific Genes of Alfalfa. Plant Physiology, 1989, 89, 375-380.	4.8	155
23	Alterations in Membrane Protein-Profile during Cold Treatment of Alfalfa. Plant Physiology, 1988, 86, 1005-1007.	4.8	17
24	Abscisic Acid-Regulated Gene Expression in Relation to Freezing Tolerance in Alfalfa. Plant Physiology, 1988, 87, 468-473.	4.8	136
25	Cold Acclimation, Freezing Resistance and Protein Synthesis in Alfalfa (Medicago sativaL. cv. Saranac). Journal of Experimental Botany, 1987, 38, 1697-1703.	4.8	40
26	Altered Gene Expression during Auxin-Induced Root Development from Excised Mung Bean Seedlings. Plant Physiology, 1987, 84, 1148-1153.	4.8	20
27	Glutathione Status and Protein Synthesis during Drought and Subsequent Rehydration in <i>Tortula ruralis</i> . Plant Physiology, 1987, 83, 816-819.	4.8	74
28	Changes in Protein Patterns and Translatable Messenger RNA Populations during Cold Acclimation of Alfalfa. Plant Physiology, 1987, 84, 1172-1176.	4.8	136
29	Protein Synthesis during Rehydration of Rapidly Dried Tortula ruralis. Plant Physiology, 1987, 85, 1094-1098.	4.8	23
30	Non-Autotrophic CO2Fixation and Drought Tolerance in Mosses. Journal of Experimental Botany, 1985, 36, 980-988.	4.8	12
31	Rapid reduction by IAA of malondialdehyde levels in avena coleoptiles, a possible effect on lipid peroxidation. Biochemical and Biophysical Research Communications, 1984, 125, 76-81.	2.1	3
32	Inhibition of protein synthesis by products of lipid peroxidation. Phytochemistry, 1982, 21, 309-313.	2.9	26
33	Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiologia Plantarum, 1982, 56, 453-457.	5.2	199
34	Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. Journal of Experimental Botany, 1981, 32, 93-101.	4.8	3,264
35	Drought Tolerance in Two Mosses: Correlated with Enzymatic Defence Against Lipid Peroxidation. Journal of Experimental Botany, 1981, 32, 79-91.	4.8	541
36	Non-autotrophic CO2Fixation during Shoot Formation in Tobacco Callus. Journal of Experimental Botany, 1979, 30, 759-767.	4.8	45

RAJINDER S DHINDSA

#	Article	IF	CITATIONS
37	Hormonal regulation of cotton ovule and fiber growth: Effects of bromodeoxyuridine, AMO-1618 and p-chlorophenoxyisobutyric acid. Planta, 1978, 141, 269-272.	3.2	14
38	Hormonal regulation of enzymes of nonautotrophic CO2 fixation in unfertilized cotton ovules. Zeitschrift FA¼r Pflanzenphysiologie, 1978, 89, 355-362.	1.4	15
39	Water Stress and Protein Synthesis. Plant Physiology, 1977, 59, 295-300.	4.8	63
40	Plant desiccation: polysome loss not due to ribonuclease. Science, 1976, 191, 181-182.	12.6	30
41	Osmoregulation in Cotton Fiber. Plant Physiology, 1975, 56, 394-398.	4.8	123