Sheng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7494581/publications.pdf

Version: 2024-02-01

218677 175258 3,490 91 26 52 h-index citations g-index papers 94 94 94 3095 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Real-Time Detection of COVID-19 Events From Twitter: A Spatial-Temporally Bursty-Aware Method. IEEE Transactions on Computational Social Systems, 2023, 10, 656-672.	4.4	1
2	SAM: Multi-turn Response Selection Based on Semantic Awareness Matching. ACM Transactions on Internet Technology, 2023, 23, 1-18.	4.4	0
3	Defending Against Adversarial Attack Towards Deep Neural Networks Via Collaborative Multi-Task Training. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 953-965.	5.4	9
4	Daedalus: Breaking Nonmaximum Suppression in Object Detection via Adversarial Examples. IEEE Transactions on Cybernetics, 2022, 52, 7427-7440.	9.5	24
5	Vulnerability Detection in SIoT Applications: A Fuzzing Method on their Binaries. IEEE Transactions on Network Science and Engineering, 2022, 9, 970-979.	6.4	2
6	Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 377-391.	13.1	150
7	Backdoor Attack on Machine Learning Based Android Malware Detectors. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3357-3370.	5.4	13
8	Addictive Incentive Mechanism in Crowdsensing From the Perspective of Behavioral Economics. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 1109-1127.	5.6	10
9	Missing Value Filling Based on the Collaboration of Cloud and Edge in Artificial Intelligence of Things. IEEE Transactions on Industrial Informatics, 2022, 18, 5394-5402.	11.3	8
10	Fuzzing: A Survey for Roadmap. ACM Computing Surveys, 2022, 54, 1-36.	23.0	61
			i
11	Social Media Event Prediction using DNN with Feedback Mechanism. ACM Transactions on Management Information Systems, 2022, 13, 1-24.	2.8	3
11		2.8	3
	Information Systems, 2022, 13, 1-24.		
12	Information Systems, 2022, 13, 1-24. Fuzzing With Optimized Grammar-Aware Mutation Strategies. IEEE Access, 2021, 9, 95061-95071. Covert Attacks Through Adversarial Learning: Study of Lane Keeping Attacks on the Safety of	4.2	3
12	Information Systems, 2022, 13, 1-24. Fuzzing With Optimized Grammar-Aware Mutation Strategies. IEEE Access, 2021, 9, 95061-95071. Covert Attacks Through Adversarial Learning: Study of Lane Keeping Attacks on the Safety of Autonomous Vehicles. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1350-1357. On the Security of Networked Control Systems in Smart Vehicle and Its Adaptive Cruise Control. IEEE	4.2 5.8	3 21
12 13 14	Information Systems, 2022, 13, 1-24. Fuzzing With Optimized Grammar-Aware Mutation Strategies. IEEE Access, 2021, 9, 95061-95071. Covert Attacks Through Adversarial Learning: Study of Lane Keeping Attacks on the Safety of Autonomous Vehicles. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1350-1357. On the Security of Networked Control Systems in Smart Vehicle and Its Adaptive Cruise Control. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3824-3831. Man-in-the-Middle Attacks Against Machine Learning Classifiers Via Malicious Generative Models. IEEE	4.2 5.8 8.0	3 21 28
12 13 14	Information Systems, 2022, 13, 1-24. Fuzzing With Optimized Grammar-Aware Mutation Strategies. IEEE Access, 2021, 9, 95061-95071. Covert Attacks Through Adversarial Learning: Study of Lane Keeping Attacks on the Safety of Autonomous Vehicles. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1350-1357. On the Security of Networked Control Systems in Smart Vehicle and Its Adaptive Cruise Control. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3824-3831. Man-in-the-Middle Attacks Against Machine Learning Classifiers Via Malicious Generative Models. IEEE Transactions on Dependable and Secure Computing, 2021, 18, 2074-2087. Synthesized Corpora to Evaluate Fuzzing for Green Internet of Things Programs. IEEE Transactions on	4.2 5.8 8.0 5.4	3 21 28

#	Article	IF	CITATIONS
19	CSI-Fuzz: Full-speed Edge Tracing Using Coverage Sensitive Instrumentation. IEEE Transactions on Dependable and Secure Computing, 2020, , 1-1.	5.4	6
20	Static Detection of File Access Control Vulnerabilities on Windows System. Concurrency Computation Practice and Experience, 2020, , e6004.	2.2	1
21	Software Vulnerability Detection Using Deep Neural Networks: A Survey. Proceedings of the IEEE, 2020, 108, 1825-1848.	21.3	214
22	Network Topology Inference Using Higher-Order Statistical Characteristics of End-to-End Measured Delays. IEEE Access, 2020, 8, 59960-59975.	4.2	3
23	Every word is valuable: Studied influence of negative words that spread during election period in social media. Concurrency Computation Practice and Experience, 2019, 31, e4525.	2.2	1
24	Faces are Protected as Privacy: An Automatic Tagging Framework Against Unpermitted Photo Sharing in Social Media. IEEE Access, 2019, 7, 75556-75567.	4.2	8
25	Catering to Your Concerns. ACM Transactions on Cyber-Physical Systems, 2019, 3, 1-21.	2.5	2
26	Crowdsensing From the Perspective of Behavioral Economics: An Incentive Mechanism Based on Mental Accounting. IEEE Internet of Things Journal, 2019, 6, 9123-9139.	8.7	12
27	A Feature-Oriented Corpus for Understanding, Evaluating and Improving Fuzz Testing. , 2019, , .		8
28	Edge-based stochastic network model reveals structural complexity of edges. Future Generation Computer Systems, 2019, 100, 1073-1087.	7.5	5
29	Forward to the special issue of the 9th International Symposium on Cyberspace Safety and Security (CSS 2017). Concurrency Computation Practice and Experience, 2019, 31, e5535.	2.2	0
30	Using AI to Attack VA: A Stealthy Spyware Against Voice Assistances in Smart Phones. IEEE Access, 2019, 7, 153542-153554.	4.2	11
31	DeepBalance: Deep-Learning and Fuzzy Oversampling for Vulnerability Detection. IEEE Transactions on Fuzzy Systems, 2019, , 1-1.	9.8	50
32	Identifying Propagation Source in Large-Scale Networks. Advances in Information Security, 2019, , 159-178.	1.2	0
33	Malicious Attack Propagation and Source Identification. Advances in Information Security, 2019, , .	1.2	2
34	Identifying Multiple Propagation Sources. Advances in Information Security, 2019, , 139-157.	1.2	0
35	Publicly verifiable database scheme with efficient keyword search. Information Sciences, 2019, 475, 18-28.	6.9	26
36	SADI: A Novel Model to Study the Propagation of Social Worms in Hierarchical Networks. IEEE Transactions on Dependable and Secure Computing, 2019, 16, 142-155.	5.4	11

#	Article	IF	Citations
37	Restrain Malicious Attack Propagation. Advances in Information Security, 2019, , 41-62.	1.2	O
38	Rumor Source Identification in Social Networks with Time-Varying Topology. IEEE Transactions on Dependable and Secure Computing, 2018, 15, 166-179.	5.4	74
39	Secure fine-grained spatio-temporal Top- <mml:math altimg="si22.gif" display="inline" id="mml51" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> queries in TMWSNs. Future Generation Computer Systems, 2018, 86, 174-184.	7.5	7
40	Malware Propagations in Wireless Ad Hoc Networks. IEEE Transactions on Dependable and Secure Computing, 2018, 15, 1016-1026.	5.4	25
41	PokÃ@mon GO in Melbourne CBD: A case study of the cyber-physical symbiotic social networks. Journal of Computational Science, 2018, 26, 456-467.	2.9	9
42	Twitter spam detection: Survey of new approaches and comparative study. Computers and Security, 2018, 76, 265-284.	6.0	116
43	Intersection Traffic Prediction Using Decision Tree Models. Symmetry, 2018, 10, 386.	2.2	48
44	Hiding RFID in the Image Matching Based Access Control to a Smart Building. , 2018, , .		2
45	Who Spread to Whom? Inferring Online Social Networks with User Features. , 2018, , .		2
46	Traffic Flow Prediction for Road Intersection Safety. , 2018, , .		12
47	TouchWB: Touch behavioral user authentication based on web browsing on smartphones. Journal of Network and Computer Applications, 2018, 117, 1-9.	9.1	51
48	Efficient and secure attribute-based signature for monotone predicates. Acta Informatica, 2017, 54, 521-541.	0.5	38
49	Investigating the deceptive information in Twitter spam. Future Generation Computer Systems, 2017, 72, 319-326.	7.5	38
50	The structure of communities in scaleâ€free networks. Concurrency Computation Practice and Experience, 2017, 29, e4040.	2.2	11
51	Identifying Propagation Sources in Networks: State-of-the-Art and Comparative Studies. IEEE Communications Surveys and Tutorials, 2017, 19, 465-481.	39.4	148
52	My Face is Mine: Fighting Unpermitted Tagging on Personal/Group Photos in Social Media. Lecture Notes in Computer Science, 2017, , 528-539.	1.3	1
53	Catch Me If You Can: Detecting Compromised Users Through Partial Observation on Networks. , 2017, ,		2
54	Detecting spamming activities in twitter based on deepâ€learning technique. Concurrency Computation Practice and Experience, 2017, 29, e4209.	2.2	25

#	Article	IF	CITATIONS
55	Reliable wireless connections for fast-moving rail users based on a chained fog structure. Information Sciences, 2017, 379, 160-176.	6.9	14
56	Bandwidth-aware energy efficient flow scheduling with SDN in data center networks. Future Generation Computer Systems, 2017, 68, 163-174.	7.5	51
57	Using epidemic betweenness to measure the influence of users in complex networks. Journal of Network and Computer Applications, 2017, 78, 288-299.	9.1	32
58	How Spam Features Change in Twitter and the Impact to Machine Learning Based Detection. Lecture Notes in Computer Science, 2017, , 898-904.	1.3	2
59	Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks. Sensors, 2017, 17, 139.	3.8	46
60	On-Street Car Parking Prediction in Smart City: A Multi-source Data Analysis in Sensor-Cloud Environment. Lecture Notes in Computer Science, 2017, , 641-652.	1.3	18
61	Analysis of the Spreading Influence Variations for Online Social Users under Attacks. , 2016, , .		1
62	Traceable Identity-Based Group Signature. RAIRO - Theoretical Informatics and Applications, 2016, 50, 193-226.	0.5	19
63	On the Race of Worms and Patches: Modeling the Spread of Information in Wireless Sensor Networks. IEEE Transactions on Information Forensics and Security, 2016, 11, 2854-2865.	6.9	52
64	Following Targets for Mobile Tracking in Wireless Sensor Networks. ACM Transactions on Sensor Networks, 2016, 12, 1-24.	3.6	39
65	An overview of Fog computing and its security issues. Concurrency Computation Practice and Experience, 2016, 28, 2991-3005.	2.2	291
66	Detecting stepping stones by abnormal causality probability. Security and Communication Networks, 2015, 8, 1831-1844.	1.5	0
67	Identifying Diffusion Sources in Large Networks: A Community Structure Based Approach. , 2015, , .		1
68	Mobility Increases the Risk of Malware Propagations in Wireless Networks. , 2015, , .		2
69	The Relation Between Local and Global Influence of Individuals in Scale-Free Networks., 2015,,.		0
70	K-Center: An Approach on the Multi-Source Identification of Information Diffusion. IEEE Transactions on Information Forensics and Security, 2015, 10, 2616-2626.	6.9	57
71	Maximizing real-time streaming services based on a multi-servers networking framework. Computer Networks, 2015, 93, 199-212.	5.1	14
72	A Sword with Two Edges: Propagation Studies on Both Positive and Negative Information in Online Social Networks. IEEE Transactions on Computers, 2015, 64, 640-653.	3.4	142

#	Article	IF	CITATIONS
73	First-Priority Relation Graph-Based Malicious Users Detection in Mobile Social Networks. Lecture Notes in Computer Science, 2015, , 459-466.	1.3	5
74	Are the popular users always important for information dissemination in online social networks?. IEEE Network, 2014, 28, 64-67.	6.9	14
75	Modeling the Propagation of Worms in Networks: A Survey. IEEE Communications Surveys and Tutorials, 2014, 16, 942-960.	39.4	135
76	Detection and defense of application-layer DDoS attacks in backbone web traffic. Future Generation Computer Systems, 2014, 38, 36-46.	7.5	93
77	To Shut Them Up or to Clarify: Restraining the Spread of Rumors in Online Social Networks. IEEE Transactions on Parallel and Distributed Systems, 2014, 25, 3306-3316.	5.6	99
78	Modeling and Analysis on the Propagation Dynamics of Modern Email Malware. IEEE Transactions on Dependable and Secure Computing, 2014, 11, 361-374.	5.4	58
79	Modeling Propagation Dynamics of Social Network Worms. IEEE Transactions on Parallel and Distributed Systems, 2013, 24, 1633-1643.	5.6	87
80	Detecting Stepping Stones by Abnormal Causality Probability. Lecture Notes in Computer Science, 2013, , 308-322.	1.3	0
81	Modeling and Analysis for Thwarting Worm Propagation in Email Networks. Lecture Notes in Computer Science, 2013, , 763-769.	1.3	0
82	An Analytical Model on the Propagation of Modern Email Worms. , 2012, , .		0
83	CAFS: a novel lightweight cache-based scheme for large-scale intrusion alert fusion. Concurrency Computation Practice and Experience, 2012, 24, 1137-1153.	2.2	3
84	Locating Defense Positions for Thwarting the Propagation of Topological Worms. IEEE Communications Letters, 2012, 16, 560-563.	4.1	19
84		4.1	19
	Communications Letters, 2012, 16, 560-563.	4.1	
85	Communications Letters, 2012, 16, 560-563. Modeling worms propagation on probability., 2011, , .		1
85	Communications Letters, 2012, 16, 560-563. Modeling worms propagation on probability., 2011, , . Eliminating Errors in Worm Propagation Models. IEEE Communications Letters, 2011, 15, 1022-1024.	4.1	9
85 86 87	Communications Letters, 2012, 16, 560-563. Modeling worms propagation on probability., 2011, , . Eliminating Errors in Worm Propagation Models. IEEE Communications Letters, 2011, 15, 1022-1024. The Microcosmic Model of Worm Propagation. Computer Journal, 2011, 54, 1700-1720.	4.1	9

ARTICLE IF CITATIONS

91 The Fog Computing Paradigm: Scenarios and Security Issues.,0,,. 632