Shaik Mohammed Zakeeruddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7494502/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting the Impact of Morphology and Oxidation State of Cu on CO ₂ Reduction Using Electrochemical Flow Cell. Journal of Physical Chemistry Letters, 2022, 13, 345-351.	4.6	13
2	Solar Water Splitting Using Earthâ€Abundant Electrocatalysts Driven by Highâ€Efficiency Perovskite Solar Cells. ChemSusChem, 2022, 15, .	6.8	12
3	A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nature Communications, 2022, 13, 89.	12.8	77
4	Solid-state synthesis of CdFe2O4 binary catalyst for potential application in renewable hydrogen fuel generation. Scientific Reports, 2022, 12, 1632.	3.3	5
5	Conformal quantum dot–SnO ₂ layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302-306.	12.6	872
6	CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics. Energy and Environmental Science, 2022, 15, 1536-1544.	30.8	39
7	Efficient and Stable Large Bandgap MAPbBr ₃ Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 2022, 7, 1112-1119.	17.4	21
8	Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems. ACS Applied Energy Materials, 2022, 5, 3156-3165.	5.1	2
9	Nanosegregation in arene-perfluoroarene π-systems for hybrid layered Dion–Jacobson perovskites. Nanoscale, 2022, 14, 6771-6776.	5.6	7
10	Kinetics and energeticsÂof metal halide perovskite conversion reactions at the nanoscale. Communications Materials, 2022, 3, .	6.9	12
11	Perovskite Materials and Devices. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	1
12	Thiocyanate-Mediated Dimensionality Transformation of Low-Dimensional Perovskites for Photovoltaics. Chemistry of Materials, 2022, 34, 6331-6338.	6.7	5
13	Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. International Journal of Biological Macromolecules, 2021, 167, 101-116.	7.5	41
14	Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Letters, 2021, 6, 208-215.	17.4	67
15	Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO ₂ . Energy and Environmental Science, 2021, 14, 3447-3454.	30.8	115
16	Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%. Journal of the American Chemical Society, 2021, 143, 3231-3237.	13.7	152
17	The Rise of Dyeâ€Sensitized Solar Cells: From Molecular Photovoltaics to Emerging Solidâ€State Photovoltaic Technologies. Helvetica Chimica Acta, 2021, 104, e2000230.	1.6	18
18	Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance. Jacs Au, 2021, 1, 409-426.	7.9	66

#	Article	IF	CITATIONS
19	Formation of Highâ€Performance Multiâ€Cation Halide Perovskites Photovoltaics by δâ€CsPbl ₃ ∫δâ€RbPbl ₃ Seedâ€Assisted Heterogeneous Nucleation. Advanced Energy Materials, 2021, 11, 2003785.	19.5	32
20	A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nature Communications, 2021, 12, 1777.	12.8	196
21	Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.	27.8	2,095
22	A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI ₃ . Science Advances, 2021, 7, .	10.3	49
23	Quantifying Stabilized Phase Purity in Formamidinium-Based Multiple-Cation Hybrid Perovskites. Chemistry of Materials, 2021, 33, 2769-2776.	6.7	13
24	Benzylammoniumâ€Mediated Formamidinium Lead Iodide Perovskite Phase Stabilization for Photovoltaics. Advanced Functional Materials, 2021, 31, 2101163.	14.9	28
25	Surface Reconstruction Engineering with Synergistic Effect of Mixedâ€Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102902.	14.9	57
26	Cyclopentadieneâ€Based Holeâ€Transport Material for Costâ€Reduced Stabilized Perovskite Solar Cells with Power Conversion Efficiencies Over 23%. Advanced Energy Materials, 2021, 11, 2003953.	19.5	24
27	Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nature Communications, 2021, 12, 3383.	12.8	72
28	Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities. Accounts of Chemical Research, 2021, 54, 2729-2740.	15.6	48
29	Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587-1601.	24.0	120
30	Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Science Advances, 2021, 7, .	10.3	195
31	Naphthalenediimide/Formamidinium-Based Low-Dimensional Perovskites. Chemistry of Materials, 2021, 33, 6412-6420.	6.7	16
32	New Insights into the Interface of Electrochemical Flow Cells for Carbon Dioxide Reduction to Ethylene. Journal of Physical Chemistry Letters, 2021, 12, 7583-7589.	4.6	21
33	Dopant Engineering for Spiroâ€OMeTAD Holeâ€Transporting Materials towards Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102124.	14.9	67
34	A Fully Printable Holeâ€Transporterâ€Free Semiâ€Transparent Perovskite Solar Cell. European Journal of Inorganic Chemistry, 2021, 2021, 3752-3760.	2.0	6
35	Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3650-3660.	17.4	28
36	Nanoscale Phase Segregation in Supramolecular ï€-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography. Journal of the American Chemical Society, 2021, 143, 1529-1538.	13.7	55

#	Article	IF	CITATIONS
37	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 5552-5562.	30.8	69
38	Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. ACS Energy Letters, 2021, 6, 3916-3923.	17.4	115
39	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€Pure, and Stable αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 27299-27306.	13.8	46
40	Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films. Journal of Materials Chemistry A, 2021, 9, 26885-26895.	10.3	4
41	Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nature Energy, 2021, 6, 1154-1163.	39.5	72
42	Halide Versus Nonhalide Salts: The Effects of Guanidinium Salts on the Structural, Morphological, and Photovoltaic Performances of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900234.	5.8	19
43	Molecular Engineering of Simple Metalâ€Free Organic Dyes Derived from Triphenylamine for Dyeâ€ S ensitized Solar Cell Applications. ChemSusChem, 2020, 13, 212-220.	6.8	31
44	Supramolecular Modulation of Hybrid Perovskite Solar Cells via Bifunctional Halogen Bonding Revealed by Two-Dimensional ¹⁹ F Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 1645-1654.	13.7	69
45	New Strategies for Defect Passivation in Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903090.	19.5	237
46	Guanine‣tabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie - International Edition, 2020, 59, 4691-4697.	13.8	61
47	Guanineâ€Stabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie, 2020, 132, 4721-4727.	2.0	Ο
48	Formamidiniumâ€Based Dionâ€Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties. Advanced Functional Materials, 2020, 30, 2003428.	14.9	61
49	Minimizing the Trade-Off between Photocurrent and Photovoltage in Triple-Cation Mixed-Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 10188-10195.	4.6	36
50	Unravelling the structural complexity and photophysical properties of adamantyl-based layered hybrid perovskites. Journal of Materials Chemistry A, 2020, 8, 17732-17740.	10.3	14
51	Blue Photosensitizer with Copper(II/I) Redox Mediator for Efficient and Stable Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2020, 30, 2004804.	14.9	30
52	Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 19980-19991.	13.7	145
53	Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100053.	5.6	24
54	Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 11428-11433.	13.7	107

#	Article	IF	CITATIONS
55	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbI ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie - International Edition, 2020, 59, 15688-15694.	13.8	201
56	High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic Cation. ACS Energy Letters, 2020, 5, 2223-2230.	17.4	96
57	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbI ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie, 2020, 132, 15818-15824.	2.0	17
58	Phenanthreneâ€Fusedâ€Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copperâ€Electrolyteâ€Based Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2020, 132, 9410-9415.	2.0	17
59	Phenanthreneâ€Fusedâ€Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copperâ€Electrolyteâ€Based Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 9324-9329.	13.8	59
60	Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD <i>versus</i> spiro-OMeTAD. Journal of Materials Chemistry A, 2020, 8, 8527-8539.	10.3	28
61	Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups. Journal of Physical Chemistry C, 2020, 124, 7071-7081.	3.1	24
62	A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte. Advanced Materials, 2020, 32, 2000193.	21.0	24
63	Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 101359.	4.1	105
64	Cyclopentadithiophene-Based Hole-Transporting Material for Highly Stable Perovskite Solar Cells with Stabilized Efficiencies Approaching 21%. ACS Applied Energy Materials, 2020, 3, 7456-7463.	5.1	26
65	Electron-Selective Layers for Dye-Sensitized Solar Cells Based on TiO ₂ and SnO ₂ . Journal of Physical Chemistry C, 2020, 124, 6512-6521.	3.1	34
66	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	39.5	797
67	Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application. Science Advances, 2020, 6, eaay5661.	10.3	95
68	Photovoltaic Performance of Porphyrinâ€Based Dyeâ€Sensitized Solar Cells with Binary Ionic Liquid Electrolytes. Energy Technology, 2020, 8, 2000092.	3.8	5
69	Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials, 2020, 32, e1907757.	21.0	303
70	Guanidiniumâ€Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics. Advanced Materials, 2020, 32, e2001906.	21.0	125
71	Vapor-assisted deposition of highly efficient, stable black-phase FAPbI ₃ perovskite solar cells. Science, 2020, 370, .	12.6	530
72	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie, 2019, 131, 15178-15182.	2.0	33

#	Article	IF	CITATIONS
73	Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels. Angewandte Chemie - International Edition, 2019, 58, 15036-15040.	13.8	150
74	Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nature Communications, 2019, 10, 3008.	12.8	268
75	Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR. Journal of the American Chemical Society, 2019, 141, 17659-17669.	13.7	104
76	Lowâ€Cost and Highly Efficient Carbonâ€Based Perovskite Solar Cells Exhibiting Excellent Longâ€Term Operational and UV Stability. Small, 2019, 15, e1904746.	10.0	83
77	Selective C–C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 18704-18714.	13.7	270
78	Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA) <i>_x</i> (MA) _{1–<i>x</i>} Pbl ₃ -Based Perovskite Solar Cells. ACS Omega, 2019, 4, 16840-16846.	3.5	25
79	PbZrTiO ₃ ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 382-389.	4.9	35
80	Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discussions, 2019, 215, 282-296.	3.2	56
81	Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics. ACS Applied Energy Materials, 2019, 2, 4264-4273.	5.1	20
82	Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Science Advances, 2019, 5, eaaw2543.	10.3	524
83	An Oxa[5]helicene-Based Racemic Semiconducting Glassy Film for Photothermally Stable Perovskite Solar Cells. IScience, 2019, 15, 234-242.	4.1	36
84	Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials. Organic Letters, 2019, 21, 3261-3264.	4.6	12
85	SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 3822-3829.	5.1	26
86	Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics. Nano Energy, 2019, 61, 126-131.	16.0	35
87	Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. Macromolecules, 2019, 52, 2243-2254.	4.8	50
88	Metal Coordination Complexes as Redox Mediators in Regenerative Dye-Sensitized Solar Cells. Inorganics, 2019, 7, 30.	2.7	79
89	Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10729-10738.	10.3	13
90	A partially-planarised hole-transporting quart- <i>p</i> -phenylene for perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 4332-4335.	5.5	6

#	Article	IF	CITATIONS
91	Supramolecular Engineering for Formamidiniumâ€Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solidâ€5tate NMR Spectroscopy. Advanced Energy Materials, 2019, 9, 1900284.	19.5	89
92	A tandem redox system with a cobalt complex and 2-azaadamantane- <i>N</i> -oxyl for fast dye regeneration and open circuit voltages exceeding 1 V. Journal of Materials Chemistry A, 2019, 7, 10998-11006.	10.3	8
93	Influence of Alkoxy Chain Length on the Properties of Twoâ€Dimensionally Expanded Azuleneâ€Coreâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 6741-6752.	3.3	21
94	Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells. Chemistry of Materials, 2019, 31, 1620-1627.	6.7	99
95	Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling <i>via</i> modular architecture design. Energy and Environmental Science, 2019, 12, 3585-3594.	30.8	102
96	Bimetallic Electrocatalysts for Carbon Dioxide Reduction. Chimia, 2019, 73, 928.	0.6	7
97	Doping and phase segregation in Mn ²⁺ - and Co ²⁺ -doped lead halide perovskites from ¹³³ Cs and ¹ H NMR relaxation enhancement. Journal of Materials Chemistry A, 2019, 7, 2326-2333.	10.3	59
98	Siteâ€selective Synthesis of βâ€{70]PCBMâ€like Fullerenes: Efficient Application in Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 3224-3228.	3.3	37
99	Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion–Jacobson Two-Dimensional Perovskite Solar Cells. Nano Letters, 2019, 19, 150-157.	9.1	218
100	A <i>peri</i> â€Xanthenoxanthene Centered Columnarâ€Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 945-948.	3.3	21
101	Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 2019, 1-9.	5.7	15
102	Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 2019, 8474698.	5.7	22
103	Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells. New Journal of Chemistry, 2018, 42, 9045-9050.	2.8	32
104	Planar Perovskite Solar Cells with High Openâ€Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant. ChemPhysChem, 2018, 19, 1363-1370.	2.1	17
105	Impact of Peripheral Groups on Phenothiazine-Based Hole-Transporting Materials for Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1145-1152.	17.4	125
106	Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells. Energy and Environmental Science, 2018, 11, 1779-1787.	30.8	148
107	Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States. Advanced Energy Materials, 2018, 8, 1800275.	19.5	106
108	Formation of Stable Mixed Guanidinium–Methylammonium Phases with Exceptionally Long Carrier Lifetimes for High-Efficiency Lead Iodide-Based Perovskite Photovoltaics. Journal of the American Chemical Society, 2018, 140, 3345-3351.	13.7	235

#	Article	IF	CITATIONS
109	Poly(ethylene glycol)–[60]Fullereneâ€Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis. ChemSusChem, 2018, 11, 1032-1039.	6.8	57
110	Influence of the Nature of A Cation on Dynamics of Charge Transfer Processes in Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706073.	14.9	58
111	Boosting the Efficiency of Perovskite Solar Cells with CsBrâ€Modified Mesoporous TiO ₂ Beads as Electronâ€ S elective Contact. Advanced Functional Materials, 2018, 28, 1705763.	14.9	115
112	A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency. Journal of the American Chemical Society, 2018, 140, 2405-2408.	13.7	270
113	An investigation of the roles furan <i>versus</i> thiophene π-bridges play in donor–π-acceptor porphyrin based DSSCs. Dalton Transactions, 2018, 47, 6549-6556.	3.3	24
114	Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule, 2018, 2, 1108-1117.	24.0	291
115	Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics. Nano Letters, 2018, 18, 2428-2434.	9.1	116
116	Molecular Design of Efficient Organic D–A––A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye‣ensitized Solar Cells. ChemSusChem, 2018, 11, 494-502.	6.8	45
117	Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 3480-3490.	30.8	274
118	Hydrothermally processed CuCrO ₂ nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. Journal of Materials Chemistry A, 2018, 6, 20327-20337.	10.3	85
119	Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte. Joule, 2018, 2, 2145-2153.	24.0	94
120	Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nature Communications, 2018, 9, 4482.	12.8	266
121	High Open Circuit Voltage for Perovskite Solar Cells with S,Siâ€Heteropentaceneâ€Based Hole Conductors. European Journal of Inorganic Chemistry, 2018, 2018, 4573-4578.	2.0	10
122	Phase Segregation in Potassium-Doped Lead Halide Perovskites from ³⁹ K Solid-State NMR at 21.1 T. Journal of the American Chemical Society, 2018, 140, 7232-7238.	13.7	130
123	Elucidation of Charge Recombination and Accumulation Mechanism in Mixed Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 15149-15154.	3.1	59
124	Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 2985-2992.	30.8	216
125	Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800416.	3.7	45
126	Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and Recombination Behavior in Dye-Sensitized Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 4950-4962.	5.1	49

#	Article	IF	CITATIONS
127	Electronâ€Affinityâ€Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2018, 130, 14321-14324.	2.0	26
128	Insights about the Absence of Rb Cation from the 3D Perovskite Lattice: Effect on the Structural, Morphological, and Photophysical Properties and Photovoltaic Performance. Small, 2018, 14, e1802033.	10.0	24
129	Electronâ€Affinityâ€Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 14125-14128.	13.8	56
130	Roomâ€Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low ost Solar Cells. Advanced Materials, 2017, 29, 1606258.	21.0	124
131	Isomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials, 2017, 29, 1606806.	21.0	320
132	Redox Catalysis for Improved Counterâ€Electrode Kinetics in Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2017, 4, 1356-1361.	3.4	5
133	Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. Journal of Materials Chemistry A, 2017, 5, 4797-4802.	10.3	80
134	Function Follows Form: Correlation between the Growth and Local Emission of Perovskite Structures and the Performance of Solar Cells. Advanced Functional Materials, 2017, 27, 1701433.	14.9	26
135	Multistep Photoluminescence Decay Reveals Dissociation of Geminate Charge Pairs in Organolead Trihalide Perovskites. Advanced Energy Materials, 2017, 7, 1700405.	19.5	8
136	Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017, 11, 372-378.	31.4	871
137	New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chemistry of Materials, 2017, 29, 587-594.	6.7	68
138	Cation Dynamics in Mixed-Cation (MA) _{<i>x</i>} (FA) _{1–<i>x</i>} Pbl ₃ Hybrid Perovskites from Solid-State NMR. Journal of the American Chemical Society, 2017, 139, 10055-10061.	13.7	209
139	Hill climbing hysteresis of perovskiteâ€based solar cells: a maximum power point tracking investigation. Progress in Photovoltaics: Research and Applications, 2017, 25, 942-950.	8.1	40
140	11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nature Communications, 2017, 8, 15390.	12.8	229
141	High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment. Journal of Materials Chemistry A, 2017, 5, 12060-12067.	10.3	90
142	Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358, 768-771.	12.6	1,285
143	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	16.0	232
144	The Role of Rubidium in Multipleâ€Cationâ€Based Highâ€Efficiency Perovskite Solar Cells. Advanced Materials, 2017, 29, 1701077.	21.0	120

#	Article	IF	CITATIONS
145	Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA) _{<i>x</i>} (i>x1– <i>x</i> PbI ₃ Hybrid Perovskites from Solid-State NMR. Journal of the American Chemical Society, 2017, 139, 14173-14180.	13.7	317
146	Investigation on the Interface Modification of TiO ₂ Surfaces by Functional Coâ€Adsorbents for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2017, 18, 2724-2731.	2.1	26
147	Reduction in the Interfacial Trap Density of Mechanochemically Synthesized MAPbI ₃ . ACS Applied Materials & Interfaces, 2017, 9, 28418-28425.	8.0	73
148	Donor–Acceptor-Type <i>S</i> , <i>N</i> -Heteroacene-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 44423-44428.	8.0	31
149	Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery. Journal of Materials Chemistry C, 2017, 5, 7799-7805.	5.5	34
150	Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility. Advanced Materials Technologies, 2017, 2, 1600183.	5.8	137
151	Influence of Ionic Liquid Electrolytes on the Photovoltaic Performance of Dyeâ€Sensitized Solar Cells. Energy Technology, 2017, 5, 321-326.	3.8	24
152	Effect of Cs-Incorporated NiO _{<i>x</i>} on the Performance of Perovskite Solar Cells. ACS Omega, 2017, 2, 9074-9079.	3.5	43
153	Interfacial Kinetics of Efficient Perovskite Solar Cells. Crystals, 2017, 7, 252.	2.2	24
154	Additives, Hole Transporting Materials and Spectroscopic Methods to Characterize the Properties of Perovskite Films. Chimia, 2017, 71, 754.	0.6	4
155	Highâ€Efficiency Perovskite Solar Cells Employing a <i>S</i> , <i>N</i> â€Heteropentaceneâ€based D–A Holeâ€Transport Material. ChemSusChem, 2016, 9, 433-438.	6.8	61
156	Identifying Fundamental Limitations in Halide Perovskite Solar Cells. Advanced Materials, 2016, 28, 2439-2445.	21.0	129
157	Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH ₃ NH ₃ PbI ₃ Perovskite. Advanced Energy Materials, 2016, 6, 1502472.	19.5	196
158	High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15027-15034.	3.1	28
159	Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells. Advanced Materials, 2016, 28, 3966-3972.	21.0	152
160	A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 16330-16334.	10.3	87
161	Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206-209.	12.6	3,137
162	Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2016, 138, 10742-10745.	13.7	119

#	Article	IF	CITATIONS
163	Enhancing Efficiency of Perovskite Solar Cells via Nâ€doped Graphene: Crystal Modification and Surface Passivation. Advanced Materials, 2016, 28, 8681-8686.	21.0	281
164	Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency. Advanced Energy Materials, 2016, 6, 1600767.	19.5	224
165	Impact of a Mesoporous Titania–Perovskite Interface on the Performance of Hybrid Organic–Inorganic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3264-3269.	4.6	85
166	Dopantâ€Free Donor (D)–π–D–π–D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	6.8	83
167	Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater thanÅ21%. Nature Energy, 2016, 1, .	39.5	1,719
168	Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy. Scientific Reports, 2016, 6, 24465.	3.3	22
169	Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage. Nano Letters, 2016, 16, 7155-7162.	9.1	104
170	Solar Cells: Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency (Adv. Energy Mater. 20/2016). Advanced Energy Materials, 2016, 6, .	19.5	2
171	Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization. ACS Applied Materials & Interfaces, 2016, 8, 32797-32804.	8.0	67
172	Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. Journal of the American Chemical Society, 2016, 138, 15087-15096.	13.7	239
173	Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Science Advances, 2016, 2, e1601156.	10.3	307
174	Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO ₂ Films. Advanced Materials, 2016, 28, 2964-2970.	21.0	144
175	A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353, 58-62.	12.6	1,636
176	Dye-sensitized solar cells with inkjet-printed dyes. Energy and Environmental Science, 2016, 9, 2453-2462.	30.8	65
177	A Novel Dopantâ€Free Triphenylamine Based Molecular "Butterfly―Holeâ€Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600401.	19.5	161
178	Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications, 2016, 7, 10379.	12.8	744
179	Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy and Environmental Science, 2016, 9, 1989-1997.	30.8	4,560
180	Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nature Communications, 2016, 7, 10334.	12.8	602

#	Article	IF	CITATIONS
181	Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2016, 2, e1501170.	10.3	1,669
182	Entropic stabilization of mixed A-cation ABX ₃ metal halide perovskites for high performance perovskite solar cells. Energy and Environmental Science, 2016, 9, 656-662.	30.8	1,077
183	Nanocomposite Semiâ€Solid Redox Ionic Liquid Electrolytes with Enhanced Chargeâ€Transport Capabilities for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 2560-2568.	6.8	18
184	Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nature Communications, 2015, 6, 7326.	12.8	295
185	High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2676-2681.	4.6	166
186	A–D–A-type S,N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 17738-17746.	10.3	105
187	Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy and Environmental Science, 2015, 8, 2946-2953.	30.8	163
188	Porphyrin Sensitizers Bearing a Pyridine-Type Anchoring Group for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14975-14982.	8.0	60
189	Light Harvesting and Charge Recombination in CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS Nano, 2015, 9, 4200-4209.	14.6	205
190	Hyperbranched self-assembled photoanode for high efficiency dye-sensitized solar cells. RSC Advances, 2015, 5, 93180-93186.	3.6	6
191	Highly efficient planar perovskite solar cells through band alignment engineering. Energy and Environmental Science, 2015, 8, 2928-2934.	30.8	1,097
192	Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature Chemistry, 2015, 7, 703-711.	13.6	1,033
193	A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells. Materials Horizons, 2015, 2, 613-618.	12.2	131
194	Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17, 171-179.	16.0	261
195	High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte. Nano Energy, 2015, 17, 206-215.	16.0	62
196	Direct light-induced polymerization of cobalt-based redox shuttles: an ultrafast way towards stable dye-sensitized solar cells. Chemical Communications, 2015, 51, 16308-16311.	4.1	73
197	Predicting the Open ircuit Voltage of CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Nonâ€Radiative Recombination. Advanced Energy Materials, 2015, 5, 1400812.	19.5	425
198	A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 19609-19615.	10.3	53

#	Article	IF	CITATIONS
199	New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chemical Science, 2014, 5, 206-214.	7.4	102
200	Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye‧ensitized Solar Cells: The Role of Benzene Spacers. Angewandte Chemie - International Edition, 2014, 53, 2973-2977.	13.8	458
201	Ionic Liquid–Sulfolane Composite Electrolytes for Highâ€Performance and Stable Dye‧ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301235.	19.5	43
202	The role of the hole-transport layer in perovskite solar cells - reducing recombination and increasing absorption. , 2014, , .		28
203	Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO ₂ Blocking Layer under Reverse Bias. Journal of Physical Chemistry Letters, 2014, 5, 3931-3936.	4.6	104
204	Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells. RSC Advances, 2014, 4, 35251.	3.6	23
205	Influence of Structural Variations in Push–Pull Zinc Porphyrins on Photovoltaic Performance of Dye‧ensitized Solar Cells. ChemSusChem, 2014, 7, 1107-1113.	6.8	39
206	Kinetics of the Regeneration by lodide of Dye Sensitizers Adsorbed on Mesoporous Titania. Journal of Physical Chemistry C, 2014, 118, 17108-17115.	3.1	26
207	Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells. Energy and Environmental Science, 2014, 7, 2981.	30.8	127
208	Thiadiazolo[3,4-c]pyridine Acceptor Based Blue Sensitizers for High Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17090-17099.	3.1	24
209	Effect of Extended Ï€-Conjugation of the Donor Structure of Organic D–Aâ~π–A Dyes on the Photovoltaic Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16486-16493.	3.1	63
210	Tridentate cobalt complexes as alternative redox couples for high-efficiency dye-sensitized solar cells. Chemical Science, 2013, 4, 454-459.	7.4	56
211	Photoinduced Interfacial Electron Injection Dynamics in Dye-Sensitized Solar Cells under Photovoltaic Operating Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3786-3790.	4.6	52
212	Light scattering enhancement from sub-micrometer cavities in the photoanode for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 16201.	6.7	50
213	Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. Nano Energy, 2012, 1, 6-12.	16.0	38
214	Significant Improvement of Dyeâ€Sensitized Solar Cell Performance by Small Structural Modification in π onjugated Donor–Acceptor Dyes. Advanced Functional Materials, 2012, 22, 1291-1302.	14.9	404
215	Clickâ€Functionalized Ru(II) Complexes for Dye‣ensitized Solar Cells. Advanced Energy Materials, 2012, 2, 1004-1012	19.5	22
216	Utilization of Direct and Diffuse Sunlight in a Dye-Sensitized Solar Cell — Silicon Photovoltaic Hybrid Concentrator System. Journal of Physical Chemistry Letters, 2011, 2, 581-585.	4.6	49

#	Article	IF	CITATIONS
217	Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. Chemical Science, 2011, 2, 949.	7.4	259
218	Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study. Journal of Physical Chemistry C, 2011, 115, 18847-18855.	3.1	136
219	Application of Ionic Liquids Containing Tricyanomethanide [C(CN) ₃] ^{â^'} or Tetracyanoborate [B(CN) ₄] ^{â''} Anions in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2011, 50, 11561-11567.	4.0	96
220	Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011, 334, 629-634.	12.6	5,637
221	Cyclopentadithiophene Bridged Donor–Acceptor Dyes Achieve High Power Conversion Efficiencies in Dyeâ€5ensitized Solar Cells Based on the <i>tris</i> â€Cobalt Bipyridine Redox Couple. ChemSusChem, 2011, 4, 591-594.	6.8	327
222	Enhancedâ€Lightâ€Harvesting Amphiphilic Ruthenium Dye for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2010, 20, 1821-1826.	14.9	68
223	High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today, 2010, 5, 169-174.	11.9	76
224	An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry, 2010, 2, 385-389.	13.6	510
225	Application of Cu(ii) and Zn(ii) coproporphyrins as sensitizers for thin film dye sensitized solar cells. Energy and Environmental Science, 2010, 3, 956.	30.8	37
226	A new family of substituted triethoxysilyl iodides as organic iodide sources for dye-sensitised solar cells. Journal of Materials Chemistry, 2010, 20, 3694.	6.7	11
227	Solventâ€Free Ionic Liquid Electrolytes for Mesoscopic Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2009, 19, 2187-2202.	14.9	423
228	Inside Cover: Influence of Iodide Concentration on the Efficiency and Stability of Dye-Sensitized Solar Cell Containing Non-Volatile Electrolyte (ChemPhysChem 11/2009). ChemPhysChem, 2009, 10, 1690-1690.	2.1	0
229	Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano, 2009, 3, 3103-3109.	14.6	1,210
230	Organic Dye‧ensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers. Angewandte Chemie - International Edition, 2008, 47, 1923-1927.	13.8	389
231	High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Materials, 2008, 7, 626-630.	27.5	622
232	Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2008, 112, 13775-13781.	3.1	126
233	Molecular Wiring of Olivine LiFePO ₄ by Ruthenium(II)-Bipyridine Complexes and by Their Assemblies with Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 8708-8714.	3.1	13
234	A Novel Efficient, Iodide-Free Redox Mediator for Dye-Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2007, 1013, 1.	0.1	1

#	Article	IF	CITATIONS
235	Stable, Highâ€Efficiency Ionicâ€Liquidâ€Based Mesoscopic Dyeâ€Sensitized Solar Cells. Small, 2007, 3, 2094-21	0210.0	191
236	High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2006, 128, 4146-4154.	13.7	538
237	An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2006, 16, 2978-2983.	6.7	130
238	Control of dark current in photoelectrochemical (TiO2/l––13–) and dye-sensitized solar cells. Chemical Communications, 2005, , 4351.	4.1	561
239	A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2005, 127, 808-809.	13.7	507
240	A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells. Journal of the American Chemical Society, 2004, 126, 7164-7165.	13.7	364
241	A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2, 402-407.	27.5	1,466
242	Coll(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. Journal of Physical Chemistry B, 2001, 105, 10461-10464.	2.6	402
243	Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001, 123, 1613-1624.	13.7	2,483
244	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. , 0, , .		0
245	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pure and stable αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Che <u>mie, 0, , .</u>	2.0	11