Mark S Dooner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7493661/publications.pdf

Version: 2024-02-01

		331670	265206
58	1,782	21	42
papers	citations	h-index	g-index
58	58	58	2119
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 3211-3224.	3.8	16
2	Differentiation Epitopes Define Hematopoietic Stem Cells and Change with Cell Cycle Passage. Stem Cell Reviews and Reports, 2022, 18, 2351-2364.	3.8	2
3	The role of salivary vesicles as a potential inflammatory biomarker to detect traumatic brain injury in mixed martial artists. Scientific Reports, 2021, 11, 8186.	3.3	12
4	Effect of dose, dosing intervals, and hypoxic stress on the reversal of pulmonary hypertension by mesenchymal stem cell extracellular vesicles. Pulmonary Circulation, 2021, 11, 1-11.	1.7	3
5	Mesenchymal Stem Cell Derived Extracellular Vesicles Reverse Radiation-Induced Cytokine Storm. Blood, 2021, 138, 1100-1100.	1.4	0
6	Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 577-587.	2.9	54
7	Inflammation-related gene expression profiles of salivary extracellular vesicles in patients with head trauma. Neural Regeneration Research, 2020, 15, 676.	3.0	17
8	Age-Associated Changes in Bone Marrow-Derived Extracellular Vesicles May Alter Their Effects on Murine Hematopoietic Stem Cell Function. Blood, 2020, 136, 37-37.	1.4	1
9	Heuristic bias in stem cell biology. Stem Cell Research and Therapy, 2019, 10, 241.	5 . 5	2
10	Biodistribution of Mesenchymal Stem Cell-Derived Extracellular Vesicles in a Radiation Injury Bone Marrow Murine Model. International Journal of Molecular Sciences, 2019, 20, 5468.	4.1	42
11	Low dose 100 cGy irradiation as a potential therapy for pulmonary hypertension. Journal of Cellular Physiology, 2019, 234, 21193-21198.	4.1	9
12	Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. Journal of Cellular Physiology, 2019, 234, 14377-14388.	4.1	41
13	Robust Hematopoietic Stem Cell Function and Minimal Myeloid Skewing with Aging in Un-Separated Murine Whole Bone Marrow: What Are We Losing with Hematopoietic Stem Cell Purification?. Blood, 2019, 134, 3723-3723.	1.4	1
14	Daily rhythms influence the ability of lung-derived extracellular vesicles to modulate bone marrow cell phenotype. PLoS ONE, 2018, 13, e0207444.	2.5	9
15	Long-Term Effect of Mesenchymal Stromal Cell Derived Extracellular Vesicles on the Restoration of Engraftment of Stem Cells in Radiation Exposed Mice. Blood, 2018, 132, 5102-5102.	1.4	0
16	Using Machine Learning to Classify the "Goodness" of Hmsc-Derived and AML-Derived EV's. Blood, 2018, 132, 5244-5244.	1.4	0
17	Extracellular Vesicles (EVs) Shape the Leukemic Microenvironment. Blood, 2018, 132, 5428-5428.	1.4	4
18	Bone Marrow Endothelial Progenitor Cells Are the Cellular Mediators of Pulmonary Hypertension in the Murine Monocrotaline Injury Model. Stem Cells Translational Medicine, 2017, 6, 1595-1606.	3.3	21

#	Article	IF	Citations
19	Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 2016, 110, 319-330.	3.8	196
20	Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 27575.	12.2	28
21	Lungâ€derived exosome uptake into and epigenetic modulation of marrow progenitor/stem and differentiated cells. Journal of Extracellular Vesicles, 2015, 4, 26166.	12.2	23
22	Concise Reviews: A Stem Cell Apostasy: A Tale of Four H Words. Stem Cells, 2015, 33, 15-20.	3.2	25
23	Endothelial Progenitor Cells Are the Bone Marrow Cell Population in Mice with Monocrotaline-Induced Pulmonary Hypertension Which Induce Pulmonary Hypertension in Healthy Mice. Blood, 2015, 126, 3455-3455.	1.4	3
24	Hematopoietic Stem Cell Purification Leads to Loss of a Stem Cell Population within the Lineage Positive Cellular Fraction. Blood, 2015, 126, 4756-4756.	1.4	0
25	Biological Effects of Different Extracellular Vesicles Population on Reversal of Marrow Cells Radiation Damage. Blood, 2015, 126, 3598-3598.	1.4	0
26	Marrow Hematopoietic Stem Cells Revisited: They Exist in a Continuum and are Not Defined by Standard Purification Approaches; Then There are the Microvesicles. Frontiers in Oncology, 2014, 4, 56.	2.8	17
27	Reversal of Radiation Damage to Marrow Stem Cells By Mesenchymal Stem Cell Derived Vesicles. Blood, 2014, 124, 5118-5118.	1.4	1
28	Intercellular Communication Between Extracellular Vesicles and Murine Marrow Cells Is Influenced By Circadian Rhythm. Blood, 2014, 124, 2924-2924.	1.4	0
29	Defining Engraftment Potential within the Lineage Positive Population in Murine Marrow. Blood, 2014, 124, 4303-4303.	1.4	0
30	Mesenchymal Stem Cell-Derived Vesicles Reverse Hematopoietic Radiation Damage. Blood, 2013, 122, 2459-2459.	1.4	3
31	Progenitor/Stem Cell Fate Determination: Interactive Dynamics of Cell Cycle and Microvesicles. Stem Cells and Development, 2012, 21, 1627-1638.	2.1	43
32	Stable cell fate changes in marrow cells induced by lungâ€derived microvesicles. Journal of Extracellular Vesicles, 2012, 1, .	12.2	40
33	Cycling Marrow Stem Cells Are Lost with Purification Blood, 2012, 120, 2308-2308.	1.4	0
34	A new stem cell biology: the continuum and microvesicles. Transactions of the American Clinical and Climatological Association, 2012, 123, 152-66; discussion 166.	0.5	11
35	Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Experimental Hematology, 2010, 38, 233-245.	0.4	186
36	Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles. Experimental Hematology, 2010, 38, 581-592.	0.4	90

#	Article	IF	CITATIONS
37	Expression of Cell Cycle–Related Genes With Cytokine-Induced Cell Cycle Progression of Primitive Hematopoietic Stem Cells. Stem Cells and Development, 2010, 19, 453-460.	2.1	8
38	Adhesion Protein Profile of Lung-Derived Microvesicles. Blood, 2010, 116, 4803-4803.	1.4	0
39	Lung-Derived Microvesicles Induce Stable Long-Term Epigenetic Changes In Marrow Cells. Blood, 2010, 116, 4799-4799.	1.4	0
40	A General Theory of Marrow Stem Cell Fate Determination. Blood, 2010, 116, 4794-4794.	1.4	0
41	Stem cells and the lung. FASEB Journal, 2009, 23, 186.2.	0.5	0
42	Microvesicle Mediated Genetic Phenotype Modulation Blood, 2009, 114, 4509-4509.	1.4	0
43	Bone Marrow Transplant Induces Pulmonary Vascular Remodeling in Mice Blood, 2009, 114, 4480-4480.	1.4	0
44	Gene expression fluctuations in murine hematopoietic stem cells with cell cycle progression. Journal of Cellular Physiology, 2008, 214, 786-795.	4.1	24
45	Conversion Potential of Marrow Cells into Lung Cells Fluctuates with Cytokine-Induced Cell Cycle. Stem Cells and Development, 2008, 17, 207-220.	2.1	29
46	Differentiation Profiling of Marrow Stem Cells: A Megakaryocytic Hotspot and the Continuum Model of Hematopoiesis. Blood, 2008, 112, 4776-4776.	1.4	1
47	Alteration of Marrow Cell Gene Expression, Protein Production, and Engraftment into Lung by Lung-Derived Microvesicles: A Novel Mechanism for Phenotype Modulation. Stem Cells, 2007, 25, 2245-2256.	3.2	169
48	Stem cell continuum: Directed differentiation hotspots. Experimental Hematology, 2007, 35, 96-107.	0.4	36
49	Differentiation Hotspots on a Cell Cycle Related Continuum Blood, 2007, 110, 3703-3703.	1.4	O
50	Bone marrow production of lung cells: The impact of G-CSF, cardiotoxin, graded doses of irradiation, and subpopulation phenotype. Experimental Hematology, 2006, 34, 230-241.	0.4	58
51	Critical variables in the conversion of marrow cells to skeletal muscle. Blood, 2005, 106, 1488-1494.	1.4	18
52	The Stem Cell Continuum. Annals of the New York Academy of Sciences, 2005, 1044, 228-235.	3.8	23
53	DEVELOPMENTAL BIOLOGY: Ignoratio Elenchi: Red Herrings in Stem Cell Research. Science, 2005, 308, 1121-1122.	12.6	37
54	Intrinsic hematopoietic stem cell/progenitor plasticity: Inversions. Journal of Cellular Physiology, 2004, 199, 20-31.	4.1	52

#	Article	IF	CITATION
55	Marrow Stem Cells Shift Gene Expression and Engraftment Phenotype with Cell Cycle Transit. Journal of Experimental Medicine, 2003, 197, 1563-1572.	8.5	76
56	Homing of Purified Murine Lymphohematopoietic Stem Cells: A Cytokine-Induced Defect. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 913-922.	1.8	53
57	Adhesion receptor expression by hematopoietic cell lines and murine progenitors. Experimental Hematology, 1999, 27, 533-541.	0.4	134
58	Potential and Distribution of Transplanted Hematopoietic Stem Cells in a Nonablated Mouse Model. Blood, 1997, 89, 4013-4020.	1.4	164