Chase Beisel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7492419/publications.pdf

Version: 2024-02-01

126907 102487 4,898 74 33 66 h-index citations g-index papers 88 88 88 5492 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Selfâ€Assembled DNA Nanoclews for the Efficient Delivery of CRISPR–Cas9 for Genome Editing. Angewandte Chemie - International Edition, 2015, 54, 12029-12033.	13.8	517
2	Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems. MBio, 2014, 5, e00928-13.	4.1	315
3	Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems. Molecular Cell, 2016, 62, 137-147.	9.7	290
4	Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiology Reviews, 2010, 34, 866-882.	8.6	256
5	Guide RNA Functional Modules Direct Cas9 Activity and Orthogonality. Molecular Cell, 2014, 56, 333-339.	9.7	214
6	Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Research, 2015, 43, 674-681.	14.5	202
7	The Base-Pairing RNA Spot 42 Participates in a Multioutput Feedforward Loop to Help Enact Catabolite Repression in Escherichia coli. Molecular Cell, 2011, 41, 286-297.	9.7	197
8	Rapid and Scalable Characterization of CRISPR Technologies Using an E.Âcoli Cell-Free Transcription-Translation System. Molecular Cell, 2018, 69, 146-157.e3.	9.7	165
9	CRISPR technologies and the search for the PAM-free nuclease. Nature Communications, 2021, 12, 555.	12.8	148
10	Deciphering, Communicating, and Engineering the CRISPR PAM. Journal of Molecular Biology, 2017, 429, 177-191.	4.2	147
11	Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing. Nucleic Acids Research, 2011, 39, 2981-2994.	14.5	130
12	CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. Molecular Cell, 2018, 69, 893-905.e7.	9.7	122
13	Design Principles for Riboswitch Function. PLoS Computational Biology, 2009, 5, e1000363.	3.2	115
14	Modelâ€guided design of ligandâ€regulated RNAi for programmable control of gene expression. Molecular Systems Biology, 2008, 4, 224.	7.2	104
15	Current and future prospects for CRISPRâ€based tools in bacteria. Biotechnology and Bioengineering, 2016, 113, 930-943.	3.3	100
16	Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO Journal, 2012, 31, 1961-1974.	7.8	99
17	Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis. Cell Host and Microbe, 2018, 24, 109-119.e6.	11.0	97
18	Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annual Review of Biomedical Engineering, 2018, 20, 277-300.	12.3	83

#	Article	IF	CITATIONS
19	Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science, 2021, 372, 941-948.	12.6	83
20	Genome Editing with CRISPR as9 in <i>Lactobacillus plantarum</i> Revealed That Editing Outcomes Can Vary Across Strains and Between Methods. Biotechnology Journal, 2019, 14, 1700583.	3.5	80
21	Short DNA containing χ sites enhances DNA stability and gene expression in <i>E. coli</i> cellâ€free transcription–translation systems. Biotechnology and Bioengineering, 2017, 114, 2137-2141.	3.3	80
22	Barriers to genome editing with CRISPR in bacteria. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1327-1341.	3.0	78
23	Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nature Communications, 2019, 10, 2948.	12.8	75
24	Targeted transcriptional modulation with type I CRISPR–Cas systems in human cells. Nature Biotechnology, 2019, 37, 1493-1501.	17.5	73
25	CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers. Frontiers in Microbiology, 2019, 10, 3078.	3.5	67
26	Competitive Exclusion Is a Major Bioprotective Mechanism of Lactobacilli against Fungal Spoilage in Fermented Milk Products. Applied and Environmental Microbiology, 2020, 86, .	3.1	61
27	Synthetic control of a fitness tradeoff in yeast nitrogen metabolism. Journal of Biological Engineering, 2009, 3, 1.	4.7	59
28	A CRISPR design for next-generation antimicrobials. Genome Biology, 2014, 15, 516.	8.8	57
29	Toward a genetic tool development pipeline for host-associated bacteria. Current Opinion in Microbiology, 2017, 38, 156-164.	5.1	53
30	Bacterial sugar utilization gives rise to distinct singleâ€cell behaviours. Molecular Microbiology, 2014, 93, 1093-1103.	2.5	51
31	Cochlear whole mount in situ hybridization: identification of longitudinal and radial gradients. Brain Research Protocols, 2002, 9, 65-76.	1.6	42
32	The CRISPR RNA-guided surveillance complex in <i>Escherichia coli</i> accommodates extended RNA spacers. Nucleic Acids Research, 2016, 44, gkw421.	14.5	42
33	Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression. ACS Synthetic Biology, 2018, 7, 1219-1228.	3.8	42
34	Distinct timescales of RNA regulators enable the construction of a genetic pulse generator. Biotechnology and Bioengineering, 2019, 116, 1139-1151.	3.3	40
35	Characterization of the allâ€< scp> <i>E. coli</i> transcriptionâ€translation system myTXTL by mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1036-1048.	1.5	38
36	A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Methods, 2018, 143, 48-57.	3.8	36

#	Article	IF	Citations
37	Coupling smartphone and <scp>CRISPR–Cas12a</scp> for digital and multiplexed <scp>nucleic acid</scp> detection. AICHE Journal, 2021, 67, e17365.	3.6	35
38	An educational module to explore CRISPR technologies with a cell-free transcription-translation system. Synthetic Biology, 2019, 4, ysz005.	2.2	34
39	Characterization of Cas12a nucleases reveals diverse PAM profiles between closely-related orthologs. Nucleic Acids Research, 2020, 48, 5624-5638.	14.5	34
40	A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression. Nature Communications, 2021, 12, 3977.	12.8	34
41	<i>In Situ</i> Biomanufacturing of Small Molecules in the Mammalian Gut by Probiotic <i>Saccharomyces boulardii</i> ACS Synthetic Biology, 2021, 10, 1039-1052.	3.8	32
42	The tracrRNA in CRISPR Biology and Technologies. Annual Review of Genetics, 2021, 55, 161-181.	7.6	27
43	Rethinking the Hierarchy of Sugar Utilization in Bacteria. Journal of Bacteriology, 2016, 198, 374-376.	2.2	26
44	Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR–Cas12a gRNA switch. Nucleic Acids Research, 2021, 49, 2985-2999.	14.5	26
45	Understanding and exploiting feedback in synthetic biology. Chemical Engineering Science, 2013, 103, 79-90.	3.8	25
46	Advancing the design and delivery of CRISPR antimicrobials. Current Opinion in Biomedical Engineering, 2017, 4, 57-64.	3.4	25
47	Discriminating tastes. RNA Biology, 2011, 8, 766-770.	3.1	23
48	An enhanced assay to characterize anti-CRISPR proteins using a cell-free transcription-translation system. Methods, 2020, 172, 42-50.	3.8	21
49	A positive, growth-based PAM screen identifies noncanonical motifs recognized by the <i>S. pyogenes</i> Cas9. Science Advances, 2020, 6, eabb4054.	10.3	21
50	The $\langle i \rangle$ Acidaminococcus $\langle i \rangle$ sp. Cas12a nuclease recognizes GTTV and GCTV as non-canonical PAMs. FEMS Microbiology Letters, 2019, 366, .	1.8	17
51	The <i>Francisella novicida</i> Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays. RNA Biology, 2019, 16, 404-412.	3.1	17
52	Anti-CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases. Molecular Cell, 2022, 82, 2714-2726.e4.	9.7	17
53	Differentially Optimized Cell-Free Buffer Enables Robust Expression from Unprotected Linear DNA in Exonuclease-Deficient Extracts. ACS Synthetic Biology, 2022, 11, 732-746.	3.8	16
54	Trade-offs in Engineering Sugar Utilization Pathways for Titratable Control. ACS Synthetic Biology, 2015, 4, 141-149.	3.8	12

#	Article	lF	CITATIONS
55	Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Molecular Cell, 2022, 82, 1210-1224.e6.	9.7	10
56	Spacer prioritization in CRISPR–Cas9 immunity is enabled by the leader RNA. Nature Microbiology, 2022, 7, 530-541.	13.3	9
57	A target expression threshold dictates invader defense and prevents autoimmunity by CRISPR-Cas13. Cell Host and Microbe, 2022, 30, 1151-1162.e6.	11.0	9
58	Beneficial commensal bacteria promote Drosophila growth by downregulating the expression of peptidoglycan recognition proteins. IScience, 2022, 25, 104357.	4.1	8
59	Construction of Ligand-Responsive MicroRNAs that Operate Through Inhibition of Drosha Processing. Methods in Molecular Biology, 2014, 1111, 259-267.	0.9	6
60	Rapid Testing of CRISPR Nucleases and GuideÂRNAs in an E.Âcoli Cell-Free Transcription-Translation System. STAR Protocols, 2020, 1, 100003.	1.2	5
61	Conformational analysis of gossypol and its derivatives by molecular mechanics. Computational and Theoretical Chemistry, 2005, 730, 51-58.	1.5	3
62	Genome Editing with Cas9 in Lactobacilli. Methods in Molecular Biology, 2022, 2479, 245-261.	0.9	3
63	Advances in CRISPR Technologies for Microbial Strain Engineering. Biotechnology Journal, 2018, 13, e1800460.	3.5	2
64	CRATES: A one-step assembly method for Class 2 CRISPR arrays. Methods in Enzymology, 2019, 629, 493-511.	1.0	2
65	Tunable self-cleaving ribozymes for modulating gene expression in eukaryotic systems. PLoS ONE, 2020, 15, e0232046.	2.5	2
66	CRISPR transposons on the move. Cell Host and Microbe, 2021, 29, 675-677.	11.0	2
67	Rapidly Characterizing CRISPR-Cas13 Nucleases Using Cell-Free Transcription-Translation Systems. Methods in Molecular Biology, 2022, 2404, 135-153.	0.9	2
68	CRISPR tool puts RNA on the record. Nature, 2018, 562, 347-349.	27.8	1
69	Illuminating the path to DNA repair. Cell, 2021, 184, 5503-5505.	28.9	1
70	A TXTL-Based Assay to Rapidly Identify PAMs for CRISPR-Cas Systems with Multi-Protein Effector Complexes. Methods in Molecular Biology, 2022, 2433, 391-411.	0.9	1
71	CRISPR memories in single cells. Molecular Systems Biology, 2022, 18, e11011.	7.2	1
72	Impact of Residual Inducer on Titratable Expression Systems. PLoS ONE, 2015, 10, e0137421.	2.5	0

CHASE BEISEL

#	Article	IF	CITATIONS
73	Your Base Editor Might Be Flirting with Single (Stranded) DNA: Faithful On-Target CRISPR Base Editing without Promiscuous Deamination. Molecular Cell, 2020, 79, 703-704.	9.7	О
74	Methods for characterizing, applying, and teaching CRISPR-Cas systems. Methods, 2020, 172, 1-2.	3.8	0