Hwai-Jong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7490532/publications.pdf

Version: 2024-02-01

40 papers 4,553 citations

218677 26 h-index 289244 40 g-index

42 all docs 42 docs citations

times ranked

42

4497 citing authors

#	Article	IF	CITATIONS
1	Age-Related Changes in Synaptic Plasticity Associated with Mossy Fiber Terminal Integration during Adult Neurogenesis. ENeuro, 2020, 7, ENEURO.0030-20.2020.	1.9	9
2	Monocular enucleation alters retinal waves in the surviving eye. Neural Development, 2018, 13, 4.	2.4	5
3	Regulation of axon repulsion by MAX-1 SUMOylation and AP-3. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8236-E8245.	7.1	2
4	Epibatidine Blocks Eye-Specific Segregation in Ferret Dorsal Lateral Geniculate Nucleus during Stage III Retinal Waves. PLoS ONE, 2015, 10, e0118783.	2.5	4
5	Retinal waves regulate afferent terminal targeting in the early visual pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2957-66.	7.1	6
6	Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields. Journal of Neuroscience, 2015, 35, 14612-14623.	3.6	14
7	Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity. Neural Development, 2014, 9, 25.	2.4	13
8	Blm-s , a BH3-Only Protein Enriched in Postmitotic Immature Neurons, Is Transcriptionally Upregulated by p53 during DNA Damage. Cell Reports, 2014, 9, 166-179.	6.4	6
9	Sema3E/Plexin-D1 Mediated Epithelial-to-Mesenchymal Transition in Ovarian Endometrioid Cancer. PLoS ONE, 2011, 6, e19396.	2.5	53
10	Disrupted-in-Schizophrenia 1–mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5861-5866.	7.1	63
11	Guidance Molecules in Axon Pruning and Cell Death. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001859-a001859.	5.5	106
12	Emergence of Lamina-Specific Retinal Ganglion Cell Connectivity by Axon Arbor Retraction and Synapse Elimination. Journal of Neuroscience, 2010, 30, 16376-16382.	3.6	19
13	Functions of axon guidance molecules in synapse formation. Current Opinion in Neurobiology, 2009, 19, 471-478.	4.2	28
14	Deal Breaker: Semaphorin and Specificity in the Spinal Stretch Reflex Circuit. Neuron, 2009, 63, 8-11.	8.1	4
15	Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling. Neural Development, 2008, 3, 21.	2.4	50
16	Plexin-A3 and plexin-A4 restrict the migration of sympathetic neurons but not their neural crest precursors. Developmental Biology, 2008, 315, 448-458.	2.0	40
17	Plexin A3 and plexin A4 convey semaphorin signals during facial nerve development. Developmental Biology, 2008, 324, 1-9.	2.0	60
18	Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14157-14162.	7.1	186

#	Article	IF	Citations
19	Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8136-8141.	7.1	80
20	A RAC/CDC-42–Independent GIT/PIX/PAK Signaling Pathway Mediates Cell Migration in C. elegans. PLoS Genetics, 2008, 4, e1000269.	3.5	53
21	Semaphorin signaling facilitates cleft formation in the developing salivary gland. Development (Cambridge), 2007, 134, 2935-2945.	2.5	26
22	Axon Pruning in the Developing Vertebrate Hippocampus. Developmental Neuroscience, 2007, 29, 6-13.	2.0	27
23	Disrupted-In-Schizophrenia 1 Regulates Integration of Newly Generated Neurons in the Adult Brain. Cell, 2007, 130, 1146-1158.	28.9	576
24	Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1531-1544.	4.0	228
25	Axon Pruning and Synaptic Development: How Are They per-Plexin?. Neuroscientist, 2006, 12, 398-409.	3.5	35
26	The Caenorhabditis elegans P21-activated kinases are differentially required for UNC-6/netrin-mediated commissural motor axon guidance. Development (Cambridge), 2006, 133, 4549-4559.	2.5	56
27	A little nip and tuck: axon refinement during development and axonal injury. Current Opinion in Neurobiology, 2005, 15, 549-556.	4.2	24
28	Stereotyped Axon Pruning via Plexin Signaling Is Associated with Synaptic Complex Elimination in the Hippocampus. Journal of Neuroscience, 2005, 25, 9124-9134.	3.6	84
29	Differential Requirement for Plexin-A3 and -A4 in Mediating Responses of Sensory and Sympathetic Neurons to Distinct Class 3 Semaphorins. Neuron, 2005, 45, 513-523.	8.1	199
30	Stereotyped Pruning of Long Hippocampal Axon Branches Triggered by Retraction Inducers of the Semaphorin Family. Cell, 2003, 113, 285-299.	28.9	281
31	MAX-1, a Novel PH/MyTH4/FERM Domain Cytoplasmic Protein Implicated in Netrin-Mediated Axon Repulsion. Neuron, 2002, 34, 563-576.	8.1	109
32	Cloning and Characterization of RTK Ligands Using Receptor-Alkaline Phosphatase Fusion Proteins., 2001, 124, 313-334.		9
33	Plexin-A3 Mediates Semaphorin Signaling and Regulates the Development of Hippocampal Axonal Projections. Neuron, 2001, 32, 249-263.	8.1	206
34	Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos. Methods in Enzymology, 2000, 327, 19-35.	1.0	107
35	Alkaline phosphatase fusion proteins for molecular characterization and cloning of receptors and their ligands. Methods in Enzymology, 2000, 327, 198-210.	1.0	63
36	ARL4, an ARF-like Protein That Is Developmentally Regulated and Localized to Nuclei and Nucleoli. Journal of Biological Chemistry, 2000, 275, 37815-37823.	3.4	46

#	Article	IF	CITATION
37	Topographically Specific Effects of ELF-1 on Retinal Axon Guidance In Vitro and Retinal Axon Mapping In Vivo. Cell, 1996, 86, 755-766.	28.9	424
38	ELF-2, a New Member of the Eph Ligand Family, Is Segmentally Expressed in Mouse Embryos in the Region of the Hindbrain and Newly Forming Somites. Molecular and Cellular Biology, 1995, 15, 4921-4929.	2.3	162
39	Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell, 1995, 82, 371-381.	28.9	725
40	Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell, 1994, 79, 157-168.	28.9	364