Omar Al-Massadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7489854/publications.pdf

Version: 2024-02-01

236925 276875 1,877 57 25 41 citations h-index g-index papers 58 58 58 2727 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats. Journal of Endocrinological Investigation, 2006, 29, RC13-RC15.	3.3	112
2	Exercise protects against high-fat diet-induced hypothalamic inflammation. Physiology and Behavior, 2012, 106, 485-490.	2.1	97
3	Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends in Neurosciences, 2017, 40, 167-180.	8.6	92
4	Central Melanin-Concentrating Hormone Influences Liver and Adipose Metabolism Via Specific Hypothalamic Nuclei and Efferent Autonomic/JNK1 Pathways. Gastroenterology, 2013, 144, 636-649.e6.	1.3	79
5	High-Density Lipoprotein Maintains Skeletal Muscle Function by Modulating Cellular Respiration in Mice. Circulation, 2013, 128, 2364-2371.	1.6	73
6	Secretome analysis of rat adipose tissues shows location-specific roles for each depot type. Journal of Proteomics, 2011, 74, 1068-1079.	2.4	71
7	Obestatin as a regulator of adipocyte metabolism and adipogenesis. Journal of Cellular and Molecular Medicine, 2011, 15, 1927-1940.	3 . 6	70
8	The Gastric CB1 Receptor Modulates Ghrelin Production through the mTOR Pathway to Regulate Food Intake. PLoS ONE, 2013, 8, e80339.	2. 5	66
9	Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis. FASEB Journal, 2013, 27, 1561-1571.	0.5	65
10	Ghrelin acylation and metabolic control. Peptides, 2011, 32, 2301-2308.	2.4	61
11	Ghrelin and food reward. Neuropharmacology, 2019, 148, 131-138.	4.1	59
12	Chrelin and food reward. Neuropharmacology, 2019, 148, 131-138. Sensory Stimuli Directly Acting at the Central Nervous System Regulate Gastric Ghrelin Secretion. An ex Vivo Organ Culture Study. Endocrinology, 2007, 148, 3998-4006.	2.8	59 55
	Sensory Stimuli Directly Acting at the Central Nervous System Regulate Gastric Ghrelin Secretion. An		
12	Sensory Stimuli Directly Acting at the Central Nervous System Regulate Gastric Ghrelin Secretion. An ex Vivo Organ Culture Study. Endocrinology, 2007, 148, 3998-4006.	2.8	55
12 13	Sensory Stimuli Directly Acting at the Central Nervous System Regulate Gastric Ghrelin Secretion. An ex Vivo Organ Culture Study. Endocrinology, 2007, 148, 3998-4006. Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends in Pharmacological Sciences, 2018, 39, 685-694. Uroguanylin Action in the Brain Reduces Weight Gain in Obese Mice via Different Efferent Autonomic	2.8	55 52
12 13 14	Sensory Stimuli Directly Acting at the Central Nervous System Regulate Gastric Ghrelin Secretion. An ex Vivo Organ Culture Study. Endocrinology, 2007, 148, 3998-4006. Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends in Pharmacological Sciences, 2018, 39, 685-694. Uroguanylin Action in the Brain Reduces Weight Gain in Obese Mice via Different Efferent Autonomic Pathways. Diabetes, 2016, 65, 421-432. Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut,	2.8 8.7 0.6	55 52 47
12 13 14	Sensory Stimuli Directly Acting at the Central Nervous System Regulate Gastric Ghrelin Secretion. An ex Vivo Organ Culture Study. Endocrinology, 2007, 148, 3998-4006. Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends in Pharmacological Sciences, 2018, 39, 685-694. Uroguanylin Action in the Brain Reduces Weight Gain in Obese Mice via Different Efferent Autonomic Pathways. Diabetes, 2016, 65, 421-432. Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut, 2014, 63, 1238-1246. Muscle tissue as an endocrine organ: Comparative secretome profiling of slow-oxidative and fast-glycolytic rat muscle explants and its variation with exercise. Journal of Proteomics, 2012, 75,	2.8 8.7 0.6	55 52 47 46

#	Article	IF	CITATIONS
19	Growth hormone and somatostatin directly inhibit gastric ghrelin secretion. An in vitro organ culture system. Journal of Endocrinological Investigation, 2007, 30, RC22-RC25.	3.3	41
20	p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications, 2018, 9, 3432.	12.8	41
21	MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes, 2019, 68, 2210-2222.	0.6	34
22	Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nature Reviews Endocrinology, 2021, 17, 745-755.	9.6	34
23	Glucagon Control on Food Intake and Energy Balance. International Journal of Molecular Sciences, 2019, 20, 3905.	4.1	32
24	The Obestatin/GPR39 System Is Up-regulated by Muscle Injury and Functions as an Autocrine Regenerative System. Journal of Biological Chemistry, 2012, 287, 38379-38389.	3.4	30
25	Hypothalamic kappa opioid receptor mediates both dietâ€induced and melanin concentrating hormone–induced liver damage through inflammation and endoplasmic reticulum stress. Hepatology, 2016, 64, 1086-1104.	7.3	28
26	Age, sex, and lactating status regulate ghrelin secretion and GOAT mRNA levels from isolated rat stomach. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E341-E350.	3.5	27
27	Peripheral Endocannabinoid Systemâ€Mediated Actions of Rimonabant on Growth Hormone Secretion are Ghrelinâ€Dependent. Journal of Neuroendocrinology, 2010, 22, 1127-1136.	2.6	26
28	Macronutrients act directly on the stomach to regulate gastric ghrelin release. Journal of Endocrinological Investigation, 2010, 33, 599-602.	3.3	26
29	Ghrelin and liver disease. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 45-56.	5.7	26
30	Review of Novel Aspects of the Regulation of Ghrelin Secretion. Current Drug Metabolism, 2014, 15, 398-413.	1.2	26
31	Chronic Sympathoexcitation through Loss of Vav3, a Rac1 Activator, Results in Divergent Effects on Metabolic Syndrome and Obesity Depending on Diet. Cell Metabolism, 2013, 18, 199-211.	16.2	24
32	Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice. Endocrinology, 2016, 157, 2735-2749.	2.8	23
33	Preproghrelin expression is a key target for insulin action on adipogenesis. Journal of Endocrinology, 2011, 210, R1-R7.	2.6	22
34	Pyk2 in the amygdala modulates chronic stress sequelae via PSD-95-related micro-structural changes. Translational Psychiatry, 2019, 9, 3.	4.8	22
35	The vagus nerve as a regulator of growth hormone secretion. Regulatory Peptides, 2011, 166, 3-8.	1.9	21
36	Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Molecular and Cellular Endocrinology, 2014, 397, 42-50.	3.2	21

#	Article	IF	CITATIONS
37	Regulation of NUCB2/nesfatin-1 production in rat's stomach and adipose tissue is dependent on age, testosterone levels and lactating status. Molecular and Cellular Endocrinology, 2015, 411, 105-112.	3.2	21
38	Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis. Nature Communications, 2020, 11 , 5808 .	12.8	17
39	FNDC5 is produced in the stomach and associated to body composition. Scientific Reports, 2016, 6, 23067.	3.3	16
40	What is the real relevance of endogenous ghrelin?. Peptides, 2015, 70, 1-6.	2.4	15
41	Role of obestatin on growth hormone secretion: An in vitro approach. Biochemical and Biophysical Research Communications, 2009, 390, 1377-1381.	2.1	14
42	Circulating Irisin Levels Are Not Regulated by Nutritional Status, Obesity, or Leptin Levels in Rodents. Mediators of Inflammation, 2015, 2015, 1-11.	3.0	13
43	Hypothalamic Actions of SIRT1 and SIRT6 on Energy Balance. International Journal of Molecular Sciences, 2021, 22, 1430.	4.1	13
44	Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. Expert Opinion on Drug Discovery, 2019, 14, 421-431.	5.0	11
45	The Brain: A New Organ for the Metabolic Actions of SIRT1. Hormone and Metabolic Research, 2013, 45, 960-966.	1.5	9
46	Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biology, 2021, 41, 101945.	9.0	9
47	Oral Pharmacological Activation of Hypothalamic Guanylate Cyclase 2C Receptor Stimulates Brown Fat Thermogenesis to Reduce Body Weight. Neuroendocrinology, 2020, 110, 1042-1054.	2.5	8
48	Pyk2 in dorsal hippocampus plays a selective role in spatial memory and synaptic plasticity. Scientific Reports, 2021, 11, 16357.	3.3	8
49	Pharmacological inhibition of cannabinoid receptor 1 stimulates gastric release of nesfatin-1 via the mTOR pathway. World Journal of Gastroenterology, 2017, 23, 6403-6411.	3.3	8
50	Vagal afferents contribute to sympathoexcitation-driven metabolic dysfunctions. Journal of Endocrinology, 2019, 240, 483-496.	2.6	7
51	Crosstalk between Melanin Concentrating Hormone and Endocrine Factors: Implications for Obesity. International Journal of Molecular Sciences, 2022, 23, 2436.	4.1	7
52	Kappa-Opioid Receptor Blockade Ameliorates Obesity Caused by Estrogen Withdrawal via Promotion of Energy Expenditure through mTOR Pathway. International Journal of Molecular Sciences, 2022, 23, 3118.	4.1	7
53	The Stomach as an Energy Homeostasis Regulating Center. An Approach for Obesity. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2010, 4, 75-84.	0.6	5
54	Metabolic actions of the growth hormone-insulin growth factor-1 axis and its interaction with the central nervous system. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 919-930.	5.7	5

#	Article	IF	CITATIONS
55	Gastric Ghrelin in the Regulation of Appetite and Metabolism. , 2012, , 73-89.		2
56	Ghrelin. , 2013, , 1104-1110.		2
57	p53 and energy balance: meeting hypothalamic AgRP neurons. Cell Stress, 2018, 2, 329-331.	3.2	1