
Tina Garofalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7489673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbamylation of β2-glycoprotein lâ€,generates new autoantigens for antiphospholipid syndrome: a new tool for diagnosis of †seronegative' patients. Rheumatology, 2022, 61, 4187-4197.	0.9	2
2	Anti-Inflammatory Activity of a CB2 Selective Cannabinoid Receptor Agonist: Signaling and Cytokines Release in Blood Mononuclear Cells. Molecules, 2022, 27, 64.	1.7	10
3	Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by antiâ€Î²2â€GPI antibodies: Reply to comment from Mackman et al Journal of Thrombosis and Haemostasis, 2022, 20, 261-262.	1.9	0
4	Anti-β2-GPI Antibodies Induce Endothelial Cell Expression of Tissue Factor by LRP6 Signal Transduction Pathway Involving Lipid Rafts. Cells, 2022, 11, 1288.	1.8	4
5	HMGB1 in Pediatric COVID-19 Infection and MIS-C: A Pilot Study. Frontiers in Pediatrics, 2022, 10, 868269.	0.9	5
6	Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy, 2021, 17, 2528-2548.	4.3	42
7	The Role of Cardiolipin as a Scaffold Mitochondrial Phospholipid in Autophagosome Formation: In Vitro Evidence. Biomolecules, 2021, 11, 222.	1.8	17
8	HMGB1 expression in leukocytes as a biomarker of cellular damage induced by [99mTc]Tc-HMPAO-labelling procedure: A quality control study. Nuclear Medicine and Biology, 2021, 96-97, 94-100.	0.3	1
9	Anti-vimentin/cardiolipin IgA in the anti-phospholipid syndrome: A new tool for â€~seronegative' diagnosis. Clinical and Experimental Immunology, 2021, 205, 326-332.	1.1	4
10	Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. International Journal of Molecular Sciences, 2021, 22, 6016.	1.8	28
11	Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by antiâ€Î²2â€GPI antibodies. Journal of Thrombosis and Haemostasis, 2021, 19, 2302-2313.	1.9	11
12	Editorial: Targeting Lipid Rafts as a Strategy Against Infection and Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 748905.	1.8	1
13	Role of ERLINs in the Control of Cell Fate through Lipid Rafts. Cells, 2021, 10, 2408.	1.8	14
14	Signal transduction pathway involved in platelet activation in immune thrombotic thrombocytopenia after COVID-19 vaccination. Haematologica, 2021, , .	1.7	3
15	Overexpression of Neuroglobin Promotes Energy Metabolism and Autophagy Induction in Human Neuroblastoma SH-SY5Y Cells. Cells, 2021, 10, 3394.	1.8	14
16	A multimolecular signaling complex including PrPCand LRP1 is strictly dependent on lipid rafts and is essential for the function of tissue plasminogen activator. Journal of Neurochemistry, 2020, 152, 468-481.	2.1	24
17	Molecular Mechanisms of "Antiphospholipid Antibodies―and Their Paradoxical Role in the Pathogenesis of "Seronegative APS― International Journal of Molecular Sciences, 2020, 21, 8411.	1.8	21
18	LRP6 mediated signal transduction pathway triggered by tissue plasminogen activator acts through lipid rafts in neuroblastoma cells. Journal of Cell Communication and Signaling, 2020, 14, 315-323.	1.8	11

TINA GAROFALO

#	Article	IF	CITATIONS
19	On the role of sphingolipids in cell survival and death. International Review of Cell and Molecular Biology, 2020, 351, 149-195.	1.6	36
20	Targeting Lipid Rafts as a Strategy Against Coronavirus. Frontiers in Cell and Developmental Biology, 2020, 8, 618296.	1.8	43
21	Neuritogenic signal pathway of tPA mediated by the multimolecular complex containing PrP ^C and LRP1 is dependent on lipid rafts. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
22	Activation of liver X receptor upâ€regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB Journal, 2019, 33, 9489-9504.	0.2	19
23	Alarmin HMGB1 and Soluble RAGE as New Tools to Evaluate the Risk Stratification in Patients With the Antiphospholipid Syndrome. Frontiers in Immunology, 2019, 10, 460.	2.2	21
24	Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells. Molecular and Cellular Neurosciences, 2018, 88, 167-176.	1.0	18
25	Autophagy induces protein carbamylation in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatology, 2018, 57, 2032-2041.	0.9	12
26	Oxidative Stress Induces HSP90 Upregulation on the Surface of Primary Human Endothelial Cells: Role of the Antioxidant 7,8-Dihydroxy-4-methylcoumarin in Preventing HSP90 Exposure to the Immune System. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	1.9	19
27	Anti-Proliferative Properties and Proapoptotic Function of New CB2 Selective Cannabinoid Receptor Agonist in Jurkat Leukemia Cells. International Journal of Molecular Sciences, 2018, 19, 1958.	1.8	21
28	A Monocentric Cohort of Obstetric Seronegative Anti-Phospholipid Syndrome. Frontiers in Immunology, 2018, 9, 1678.	2.2	18
29	Recruitment of mitofusin 2 into "lipid rafts―drives mitochondria fusion induced by Mdivi-1. Oncotarget, 2018, 9, 18869-18884.	0.8	13
30	Changes in membrane lipids drive increased endocytosis following Fas ligation. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 681-695.	2.2	9
31	Elevated Serum Level of HMGB1 in Patients with the Antiphospholipid Syndrome. Journal of Immunology Research, 2017, 2017, 1-7.	0.9	13
32	Morphine Withdrawal Modifies Prion Protein Expression in Rat Hippocampus. PLoS ONE, 2017, 12, e0169571.	1.1	18
33	Autophagy generates citrullinated peptides in human synoviocytes: a possible trigger for anti-citrullinated peptide antibodies. Rheumatology, 2016, 55, 1374-1385.	0.9	58
34	Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy, 2016, 12, 917-935.	4.3	132
35	Altered Traffic of Cardiolipin during Apoptosis: Exposure on the Cell Surface as a Trigger for "Antiphospholipid Antibodies― Journal of Immunology Research, 2015, 2015, 1-9.	0.9	24
36	Autoantibodies specific to D4GDI modulate Rho GTPase mediated cytoskeleton remodeling and induce autophagy in T lymphocytes. Journal of Autoimmunity, 2015, 58, 78-89.	3.0	21

TINA GAROFALO

#	Article	IF	CITATIONS
37	Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 621-634.	2.2	46
38	Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells. Experimental Cell Research, 2015, 339, 231-240.	1.2	31
39	Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy, 2014, 10, 750-765.	4.3	82
40	PrPC associates with a multimolecular complex including LRP1 and glycosphingolipids within lipid rafts (601.1). FASEB Journal, 2014, 28, 601.1.	0.2	0
41	Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies. Cell Death and Disease, 2013, 4, e863-e863.	2.7	42
42	Dynamics of mitochondrial raft-like microdomains in cell life and death. Communicative and Integrative Biology, 2012, 5, 217-219.	0.6	25
43	Trafficking of PrP ^c to mitochondrial raft-like microdomains during cell apoptosis. Prion, 2012, 6, 354-358.	0.9	24
44	Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington's disease. Journal of Lipid Research, 2012, 53, 2057-2068.	2.0	20
45	Thin-layer chromatography immunostaining in detecting anti-phospholipid antibodies in seronegative anti-phospholipid syndrome. Clinical and Experimental Immunology, 2012, 167, 429-437.	1.1	30
46	Detection of antiphospholipid antibodies by automated chemiluminescence assay. Journal of Immunological Methods, 2012, 379, 48-52.	0.6	18
47	Ganglioside GD3 as a Raft Component in Cell Death Regulation. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 376-382.	0.9	35
48	Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Molecular Biology of the Cell, 2011, 22, 4842-4853.	0.9	35
49	Association of fission proteins with mitochondrial raft-like domains. Cell Death and Differentiation, 2010, 17, 1047-1058.	5.0	70
50	Increased HMGB1 expression and release by mononuclear cells following surgical/anesthesia trauma. Critical Care, 2010, 14, R197.	2.5	38
51	Vimentin/cardiolipin complex as a new antigenic target of the antiphospholipid syndrome. Blood, 2010, 116, 2960-2967.	0.6	88
52	Role of GD3-CLIPR-59 Association in Lymphoblastoid T Cell Apoptosis Triggered by CD95/Fas. PLoS ONE, 2010, 5, e8567.	1.1	27
53	Paracrine Diffusion of PrPC and Propagation of Prion Infectivity by Plasma Membrane-Derived Microvesicles. PLoS ONE, 2009, 4, e5057.	1.1	42
54	Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB Journal, 2009, 23, 3298-3308.	0.2	38

TINA GAROFALO

#	Article	IF	CITATIONS
55	Cardiolipinâ€enriched raftâ€like microdomains are essential activating platforms for apoptotic signals on mitochondria. FEBS Letters, 2009, 583, 2447-2450.	1.3	93
56	Neurotrophic signalling pathway triggered by prosaposin in PC12 cells occurs through lipid rafts. FEBS Journal, 2008, 275, 4903-4912.	2.2	13
57	Chapter Six Analyzing Lipid Raft Dynamics during Cell Apoptosis. Methods in Enzymology, 2008, 442, 125-140.	0.4	13
58	Endosomal compartment contributes to the propagation of CD95/Fas-mediated signals in typeÂII cells. Biochemical Journal, 2008, 413, 467-478.	1.7	27
59	Autoantibodies to the C-terminal subunit of RLIP76 induce oxidative stress and endothelial cell apoptosis in immune-mediated vascular diseases and atherosclerosis. Blood, 2008, 111, 4559-4570.	0.6	71
60	Mitoptosis: Different Pathways for Mitochondrial Execution. Autophagy, 2007, 3, 282-284.	4.3	33
61	p56lck, LFA-1 and PI3K but not SHP-2 interact with GM1- or GM3-enriched microdomains in a CD4–p56lck association-dependent manner. Biochemical Journal, 2007, 402, 471-481.	1.7	29
62	Do mitochondria act as "cargo boats―in the journey of GD3 to the nucleus during apoptosis?. FEBS Letters, 2007, 581, 3899-3903.	1.3	40
63	Anti–β ₂ â€glycoprotein I antibodies induce monocyte release of tumor necrosis factor α and tissue factor by signal transduction pathways involving lipid rafts. Arthritis and Rheumatism, 2007, 56, 2687-2697.	6.7	195
64	Dynamics of lipid raft components during lymphocyte apoptosis: The paradigmatic role of GD3. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 941-949.	2.2	66
65	Antiphospholipid reactivity against cardiolipin metabolites occurring during endothelial cell apoptosis. Arthritis Research and Therapy, 2006, 8, R180.	1.6	25
66	Role of gangliosides in the association of ErbB2 with lipid rafts in mammary epithelial HC11 cells. FEBS Journal, 2006, 273, 1821-1830.	2.2	32
67	Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells. Cell Death and Differentiation, 2005, 12, 1378-1389.	5.0	106
68	Adaptor Protein ARH Is Recruited to the Plasma Membrane by Low Density Lipoprotein (LDL) Binding and Modulates Endocytosis of the LDL/LDL Receptor Complex in Hepatocytes. Journal of Biological Chemistry, 2005, 280, 38416-38423.	1.6	31
69	Cardiolipin and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. Cell Death and Differentiation, 2004, 11, 1133-1145.	5.0	131
70	Prosaposin: a new player in cell death prevention of U937 monocytic cells. Experimental Cell Research, 2004, 298, 38-47.	1.2	25
71	Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Letters, 2004, 560, 14-18.	1.3	95
72	Role of GM3-enriched microdomains in signal transduction regulation in T lymphocytes. Glycoconjugate Journal, 2003, 20, 63-70.	1.4	42

Tina Garofalo

#	Article	IF	CITATIONS
73	Association of the Death-inducing Signaling Complex with Microdomains after Triggering through CD95/Fas. Journal of Biological Chemistry, 2003, 278, 8309-8315.	1.6	64
74	Association of GM3 with Zap-70 Induced by T Cell Activation in Plasma Membrane Microdomains. Journal of Biological Chemistry, 2002, 277, 11233-11238.	1.6	43
75	Association of cellular prion protein with gangliosides in plasma membrane microdomains of neural and lymphocytic cells. Neurochemical Research, 2002, 27, 743-749.	1.6	31
76	Ganglioside GM3 activates ERKs in human lymphocytic cells. Journal of Lipid Research, 2002, 43, 971-978.	2.0	14
77	Ganglioside GM3 activates ERKs in human lymphocytic cells. Journal of Lipid Research, 2002, 43, 971-8.	2.0	14
78	GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Letters, 2001, 506, 45-50.	1.3	49
79	Evidence for cell surface association between CXCR4 and ganglioside GM3 after gp120 binding in SupT1 lymphoblastoid cells. FEBS Letters, 2001, 506, 55-60.	1.3	35
80	Corrigendum to: GD3 glycosphingolipid contributes to Fas mediated apoptosis via association with ezrin cytoskeletal protein (FEBS 25182). FEBS Letters, 2001, 508, 494-494.	1.3	1
81	Structural Alteration of Erythrocyte Membrane during Storage: a Combined Electrical Conductometric and Flow-Cytometric Study. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 857-864.	0.6	7
82	Cardiolipin on the surface of apoptotic cells as a possible trigger for antiphospholipid antibodies. Clinical and Experimental Immunology, 2000, 122, 277-284.	1.1	91
83	Association between GM3 and CD4-Ick complex in human peripheral blood lymphocytes. Glycoconjugate Journal, 2000, 17, 247-252.	1.4	15
84	Overexpression of Lymphocytic GD3 Ganglioside and Presence of Anti-GD3 Antibodies in Patients with HIV Infection. AIDS Research and Human Retroviruses, 2000, 16, 1539-1549.	0.5	9
85	Expression of GM3 microdomains on the surfaces of murine fibroblasts correlates with inhibition of cell proliferation. Histochemistry and Cell Biology, 2000, 113, 43-50.	0.8	9
86	Glycosphingolipid Domains on Cell Plasma Membrane. Bioscience Reports, 1999, 19, 197-208.	1.1	12
87	A Novel Mechanism of CD4 Down-modulation Induced by Monosialoganglioside GM3. Journal of Biological Chemistry, 1998, 273, 35153-35160.	1.6	45
88	Evidence for the existence of ganglioside molecules in the antigen of Entamoeba histolytica. Parasite Immunology, 1996, 18, 133-137.	0.7	6
89	Influence of different glycosphingolipids on the conductometric properties of a model phospholipid membrane system. Colloids and Surfaces B: Biointerfaces, 1996, 7, 39-46.	2.5	7
90	Overexpression of Monosialoganglioside GM3 on Lymphocyte Plasma Membrane in Patients with HIV Infection. Journal of Acquired Immune Deficiency Syndromes, 1996, 12, 112-119.	0.3	12

Tina Garofalo

#	Article	IF	CITATIONS
91	Monosialoganglioside GM3 Induces CD4 Internalization in Human Peripheral Blood T Lymphocytes. Scandinavian Journal of Immunology, 1995, 41, 148-156.	1.3	33
92	Autoantibodies Against Ganglioside GM3 Represent a Portion of Anti-Lymphocyte Antibodies in AIDS Patients. Scandinavian Journal of Immunology, 1994, 40, 77-82.	1.3	18
93	Detection of antiphospholipid antibodies by immunostaining on thin layer chromatography plates. Journal of Immunological Methods, 1994, 173, 49-54.	0.6	33
94	GM3 as a Target of Anti-lymphocytic Ganglioside Antibodies in AIDS Patients. Clinical Immunology and Immunopathology, 1993, 67, 216-223.	2.1	26