
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7488668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Percutaneous delivery of self-propelling hemostatic powder for managing non-compressible abdominal hemorrhage: a proof-of-concept study in swine. Injury, 2022, 53, 1603-1609.	1.7	7
2	Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2022, 10, 796111.	4.1	14
3	Extent of intravital contraction of arterial and venous thrombi andÂpulmonary emboli. Blood Advances, 2022, 6, 1708-1718.	5.2	11
4	Contribution of septins to human platelet structure and function. IScience, 2022, , 104654.	4.1	4
5	Biomechanical origins of inherent tension in fibrin networks. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105328.	3.1	6
6	Chronic Immune Platelet Activation Is Followed by Platelet Refractoriness and Impaired Contractility. International Journal of Molecular Sciences, 2022, 23, 7336.	4.1	6
7	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2022 Congress. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12747.	2.3	4
8	Quantitative and qualitative changes in blood cells associated with COVID-19. Kazan Medical Journal, 2021, 102, 141-155.	0.2	1
9	Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid. Biochemistry, 2021, 60, 1722-1730.	2.5	2
10	Effects of Hyperhomocysteinemia on the Platelet-Driven Contraction of Blood Clots. Metabolites, 2021, 11, 354.	2.9	7
11	Pathologically stiff erythrocytes impede contraction of blood clots. Journal of Thrombosis and Haemostasis, 2021, 19, 1990-2001.	3.8	22
12	Altered platelet and coagulation function in moderate-to-severe COVID-19. Scientific Reports, 2021, 11, 16290.	3.3	24
13	Pathology of lungâ€specific thrombosis and inflammation in COVIDâ€19. Journal of Thrombosis and Haemostasis, 2021, 19, 3062-3072.	3.8	28
14	Cleavage of talin by calpain promotes platelet-mediated fibrin clot contraction. Blood Advances, 2021, 5, 4901-4909.	5.2	8
15	Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture. Acta Biomaterialia, 2021, 131, 355-369.	8.3	13
16	Visualizing thrombosis to improve thrombus resolution. Research and Practice in Thrombosis and Haemostasis, 2021, 5, 38-50.	2.3	20
17	Automated Fiber Diameter and Porosity Measurements of Plasma Clots in Scanning Electron Microscopy Images. Biomolecules, 2021, 11, 1536.	4.0	9
18	Pathologically stiff erythrocytes impede contraction of blood clots: Reply to comment. Journal of Thrombosis and Haemostasis, 2021, 19, 2894-2895.	3.8	0

#	Article	IF	CITATIONS
19	Fibrinogen and Fibrin. Sub-Cellular Biochemistry, 2021, 96, 471-501.	2.4	38
20	Pathogenesis, Diagnosis, and Treatment of Hemostatic Disorders in COVID-19 Patients. Acta Naturae, 2021, 13, 79-84.	1.7	2
21	Peculiarities of blood coagulation disorders in patients with COVID-19. Terapevticheskii Arkhiv, 2021, 93, 1255-1263.	0.8	0
22	In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation. Journal of Autoimmunity, 2020, 107, 102355.	6.5	23
23	Age-Dependent Differential Staining of Fibrin in Blood Clots and Thrombi. BioNanoScience, 2020, 10, 370-374.	3.5	9
24	Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke. Stroke, 2020, 51, 3640-3650.	2.0	40
25	An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111321.	5.0	13
26	Impaired contraction of blood clots precedes and predicts postoperative venous thromboembolism. Scientific Reports, 2020, 10, 18261.	3.3	18
27	Rupture of blood clots: Mechanics and pathophysiology. Science Advances, 2020, 6, eabc0496.	10.3	54
28	Viability, Ultrastructure, and Migration Activity of Neutrophils after Phagocytosis of Synthetic Microcapsules. Cell and Tissue Biology, 2020, 14, 275-285.	0.4	0
29	Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling. Soft Matter, 2020, 16, 8272-8283.	2.7	13
30	Accelerated Spatial Fibrin Growth and Impaired Contraction of Blood Clots in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 2020, 21, 9434.	4.1	12
31	Use of electron microscopy to study platelets and thrombi. Platelets, 2020, 31, 580-588.	2.3	14
32	The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Scientific Reports, 2020, 10, 5112.	3.3	145
33	Platelet Activation in Heparin-Induced Thrombocytopenia is Followed by Platelet Death via Complex Apoptotic and Non-Apoptotic Pathways. International Journal of Molecular Sciences, 2020, 21, 2556.	4.1	7
34	Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazan Medical Journal, 2020, 101, 485-488.	0.2	5
35	CHANGES IN THE PARAMETERS OF THROMBODYNAMICS AND BLOOD CLOT CONTRACTION IN PATIENTS WITH RHEUMATOID ARTHRITIS. Nauchno-Prakticheskaya Revmatologiya, 2020, 58, 294-303.	1.0	2
36	Lytic Susceptibility, Structure, and Mechanical Properties of Fibrin in Systemic Lupus Erythematosus. Frontiers in Immunology, 2019, 10, 1626.	4.8	19

#	Article	IF	CITATIONS
37	Mechanical Contraction of Blood Clots Impaired Due to Platelet Dysfunction and Disintegration. Biophysical Journal, 2019, 116, 416a.	0.5	1
38	Platelet factor 4-containing immune complexes induce platelet activation followed by calpain-dependent platelet death. Cell Death Discovery, 2019, 5, 106.	4.7	35
39	Could Some Nonhemostatic Plasma Proteins Serve as Refuse Collectors for Fibrin(ogen)?. Thrombosis and Haemostasis, 2019, 119, 1900-1900.	3.4	1
40	Unique transmembrane domain interactions differentially modulate integrin αvl̂23 and αIIbl̂23 function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12295-12300.	7.1	7
41	Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load. Acta Biomaterialia, 2019, 94, 514-523.	8.3	22
42	Fatal dysfunction and disintegration of thrombin-stimulated platelets. Haematologica, 2019, 104, 1866-1878.	3.5	27
43	Molecular Mechanisms of Transition from Catch to Slip Bonds in Fibrin. Biophysical Journal, 2019, 116, 342a.	0.5	0
44	Use of Modified Graphite for Single-Molecule Atomic Force Microscopy of Biomacromolecules. Biophysical Journal, 2019, 116, 428a.	0.5	1
45	Factor XIII topology: organization of B subunits and changes with activation studied with singleâ€molecule atomic force microscopy. Journal of Thrombosis and Haemostasis, 2019, 17, 737-748.	3.8	20
46	Multi-Scale Models of Deformation of Blood Clots. Biophysical Journal, 2019, 116, 323a.	0.5	2
47	Premorbid Hemostasis in Women with a History of Pregnancy Loss. Thrombosis and Haemostasis, 2019, 119, 1994-2004.	3.4	16
48	Blood clot contraction differentially modulates internal and external fibrinolysis. Journal of Thrombosis and Haemostasis, 2019, 17, 361-370.	3.8	57
49	Differential Sensitivity of Various Markers of Platelet Activation with Adenosine Diphosphate. BioNanoScience, 2019, 9, 53-58.	3.5	3
50	Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood, 2019, 133, 481-493.	1.4	48
51	Red blood cells: the forgotten player in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 2019, 17, 271-282.	3.8	263
52	Differential sensitivity of various markers of platelet activation with adenosine diphosphate. BioNanoScience, 2019, 9, 53-58.	3.5	1
53	Single-Molecule Atomic Force Microscopy of Blood Coagulation Factor XIII and its Subunits. Biophysical Journal, 2018, 114, 569a-570a.	0.5	0
54	Non-Enzymatic Self-Association of Fibrinogen in Solution Studied with 1H NMR Spectrometry. Biophysical Journal, 2018, 114, 407a.	0.5	0

#	Article	IF	CITATIONS
55	Fibrin opens the "gate―for leukocytes in the endothelium. Thrombosis Research, 2018, 162, 101-103.	1.7	0
56	Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clinical Science, 2018, 132, 243-254.	4.3	34
57	Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Scientific Reports, 2018, 8, 17907.	3.3	53
58	Keeping it clean: clot biofilm to wall out bacterial invasion. Journal of Thrombosis and Haemostasis, 2018, 16, 2359-2361.	3.8	2
59	Blood Clot Contraction is Reduced in Sickle Cell Disease due to Increased Rigidity of Erythrocytes. Biophysical Journal, 2018, 114, 540a-541a.	0.5	1
60	Morphological Signs of Intravital Contraction (Retraction) of Pulmonary Thrombotic Emboli. BioNanoScience, 2018, 8, 428-433.	3.5	17
61	Cellular Microvesicles in the Blood of Patients with Systemic Lupus Erythematosus. BioNanoScience, 2018, 8, 441-445.	3.5	3
62	Atomic Structural Models of Fibrin Oligomers. Structure, 2018, 26, 857-868.e4.	3.3	33
63	Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8575-8580.	7.1	23
64	Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism. TH Open, 2018, 02, e104-e115.	1.4	46
65	Morphological signs of the intravital contraction (retraction) of thrombotic emboli. Kazan Medical Journal, 2018, 99, 42-47.	0.2	Ο
66	Fatal Dysfunction and Fragmentation of Thrombin-Stimulated Platelets. Blood, 2018, 132, 521-521.	1.4	0
67	Fibrinolysis of Contracted Blood Clots Depends on Whether Plasminogen Activator Acts from inside or Outside. Blood, 2018, 132, 3773-3773.	1.4	0
68	Active Calpain Promotes Fibrin Clot Contraction By Strengthening the Coupling of Fibrin-Bound αIIbβ3 to the Platelet Cytoskeleton. Blood, 2018, 132, 1128-1128.	1.4	0
69	Spatial Structure of Plasma Coagulation Factor XIII and Changes with Activation. Blood, 2018, 132, 19-19.	1.4	1
70	Contraction of blood clots and thrombi: pathogenic and clinical significance. Alʹmanah KliniÄeskoj Mediciny, 2018, 46, 662-671.	0.3	5
71	A case of arterial thrombosis with formation of an atypical fibrin-rich thrombus. Kazan Medical Journal, 2018, 99, 994-997.	0.2	0
72	An anti-DNA antibody prefers damaged dsDNA over native. Journal of Biomolecular Structure and Dynamics, 2017, 35, 219-232.	3.5	7

#	Article	IF	CITATIONS
73	Fibrin Formation, Structure and Properties. Sub-Cellular Biochemistry, 2017, 82, 405-456.	2.4	434
74	Mechanistic Basis for the Binding of RGD- and AGDV-Peptides to the Platelet Integrin αIlbβ3. Biochemistry, 2017, 56, 1932-1942.	2.5	27
75	Interplay of Platelet Contractility and Elasticity of Fibrin/Erythrocytes in Blood Clot Retraction. Biophysical Journal, 2017, 112, 714-723.	0.5	41
76	Intracellular origin and ultrastructure of plateletâ€derived microparticles. Journal of Thrombosis and Haemostasis, 2017, 15, 1655-1667.	3.8	71
77	Comparison of the RGD- and AGDV-Containing Peptide Interactions with the Platelet Integrin Alphaiibbeta3. Biophysical Journal, 2017, 112, 350a.	0.5	Ο
78	Interaction of Anti-DNA Antibody MRL4 with DNA Studied at the Single-Molecule Level. Biophysical Journal, 2017, 112, 517a-518a.	0.5	0
79	Contraction of Blood Clots Is Impaired in Acute Ischemic Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 271-279.	2.4	87
80	Role of red blood cells in haemostasis and thrombosis. ISBT Science Series, 2017, 12, 176-183.	1.1	136
81	Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nature Communications, 2017, 8, 1274.	12.8	115
82	Hyperfibrinogenemia and Increased Stiffness of Plasma Clots in the Active Systemic Lupus Erythematosus. BioNanoScience, 2017, 7, 640-643.	3.5	0
83	Morphometric characterization of fibrinogen's $\hat{I}\pm C$ regions and their role in fibrin self-assembly and molecular organization. Nanoscale, 2017, 9, 13707-13716.	5.6	35
84	Autoantibodies Against dsDNA Modulate Contraction of Blood Clots. BioNanoScience, 2017, 7, 633-635.	3.5	0
85	Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. Journal of the Royal Society Interface, 2017, 14, 20170441.	3.4	54
86	Strong Binding of Platelet Integrin αIIbβ3 to Fibrin Clots: Potential Target to Destabilize Thrombi. Scientific Reports, 2017, 7, 13001.	3.3	27
87	Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression. Scientific Reports, 2017, 7, 5149.	3.3	25
88	Compression-induced structural and mechanical changes of fibrin-collagen composites. Matrix Biology, 2017, 60-61, 141-156.	3.6	36
89	Fibrin mechanical properties and their structural origins. Matrix Biology, 2017, 60-61, 110-123.	3.6	145
90	Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA. BioNanoScience, 2017, 7, 132-147.	3.5	0

RUSTEM I LITVINOV

#	Article	IF	CITATIONS
91	Structural Alterations of Monocytes in Systemic Lupus Erythematosus. BioNanoScience, 2017, 7, 636-639.	3.5	0
92	Conformational Flexibility and Self-Association of Fibrinogen in Concentrated Solutions. Journal of Physical Chemistry B, 2017, 121, 7833-7843.	2.6	29
93	Compressive Mechanics of Collagen-Fibrin Composites and Their Structural Alterations. Biophysical Journal, 2016, 110, 338a.	0.5	1
94	Force Spectroscopy of Interactions of the Integrin Alphallbbeta3 with Fibrin and Fibrinogen. Biophysical Journal, 2016, 110, 385a.	0.5	0
95	Active Dynamic Mechanics of Blood Clot Contraction. Biophysical Journal, 2016, 110, 305a-306a.	0.5	1
96	What Is the Biological and Clinical Relevance of Fibrin?. Seminars in Thrombosis and Hemostasis, 2016, 42, 333-343.	2.7	96
97	The Platelet Integrin αIIbβ3 Differentially Interacts with Fibrin Versus Fibrinogen. Journal of Biological Chemistry, 2016, 291, 7858-7867.	3.4	62
98	Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood, 2016, 127, 149-159.	1.4	133
99	Contraction of Blood Clots Is Impaired in Deep Vein Thrombosis. BioNanoScience, 2016, 6, 457-459.	3.5	11
100	Structural Basis of Interfacial Flexibility in Fibrin Oligomers. Structure, 2016, 24, 1907-1917.	3.3	35
101	Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment. Molecular Biology, 2016, 50, 442-451.	1.3	1
102	Fibrin Clot Structure and Properties are Altered in Systemic Lupus Erythematosus. BioNanoScience, 2016, 6, 345-347.	3.5	2
103	Abnormal Ultrastructure of the Platelet Plasma Membrane in Systemic Lupus Erythematosus. BioNanoScience, 2016, 6, 361-363.	3.5	0
104	Essential Dynamics of DNA-Antibody Complexes. BioNanoScience, 2016, 6, 543-549.	3.5	0
105	Structural characterization of platelets and platelet microvesicles. Cell and Tissue Biology, 2016, 10, 217-226.	0.4	6
106	Foam-like compression behavior of fibrin networks. Biomechanics and Modeling in Mechanobiology, 2016, 15, 213-228.	2.8	50
107	Blood Clot Contraction (Retraction) Is Impaired in Acute Ischemic Stroke. Blood, 2016, 128, 4998-4998.	1.4	1
108	Dependence of clot contraction (retraction) on the molecular and cellular blood composition. Kazan Medical Journal, 2016, 97, 70-77.	0.2	3

#	Article	IF	CITATIONS
109	Characterization of the Interactions of Arg-Gly-Asp- and Ala-Gly-Asp-Val-Containing Peptides with the Platelet Integrin αIIbβ3. Blood, 2016, 128, 1350-1350.	1.4	0
110	Erythrocyte Rigidity Affects Blood Clot Contraction and Formation of Polyhedrocytes. Blood, 2016, 128, 3814-3814.	1.4	2
111	Apoptosis Might Contribute to the Thrombocytopenia in Heparin-Induced Thrombocytopenia. Blood, 2016, 128, 2545-2545.	1.4	0
112	Circulating Microparticles Alter Formation, Structure and Properties of Fibrin Clots. Scientific Reports, 2015, 5, 17611.	3.3	76
113	Not fibrin(ogen), but fibrinogen or fibrin. Blood, 2015, 126, 1977-1978.	1.4	7
114	Fibrinogen Hydrodynamic Properties from NMR-Diffusion Studies. Biophysical Journal, 2015, 108, 48a.	0.5	0
115	Effect of blood microparticles on the kinetics of polymerization and enzymatic hydrolysis of fibrin. Doklady Biochemistry and Biophysics, 2015, 462, 151-154.	0.9	3
116	Membrane Remodeling By Pathogenic Antibodies Underlies Monocyte Activation in Heparin-Induced Thrombocytopenia. Blood, 2015, 126, 2244-2244.	1.4	1
117	The Platelet Integrin alphallbbeta3 Differentially Interacts with Fibrin and Fibrinogen. Blood, 2015, 126, 3444-3444.	1.4	0
118	T2 Magnetic Resonance: A Diagnostic Platform for Studying Integrated Hemostasis in Whole Blood—Proof of Concept. Clinical Chemistry, 2014, 60, 1174-1182.	3.2	26
119	An Automated Approach for Fibrin Network Segmentation and Structure Identification in 3D Confocal Microscopy Images. , 2014, , .		6
120	Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood, 2014, 123, 1596-1603.	1.4	311
121	Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials, 2014, 35, 6739-6749.	11.4	110
122	Microparticles Modulate Formation, Structure, and Properties of Fibrin Clots. Blood, 2014, 124, 2807-2807.	1.4	1
123	Effects of Platelets and Erythrocytes on the Dynamic Size and Mechanical Properties of Blood Clots during Contraction. Blood, 2014, 124, 4225-4225.	1.4	0
124	Blood Clot Contraction Dynamics Studied with an Automated Analyzer System. Blood, 2014, 124, 2796-2796.	1.4	0
125	Anti-Apoptotic Effects of Platelet Factor 4 on Human T-Lymphocytes. Blood, 2014, 124, 1418-1418.	1.4	0
126	Shear strengthens fibrin: the knob–hole interactions display â€~catchâ€slip' kinetics. Journal of Thrombosis and Haemostasis, 2013, 11, 1933-1935.	3.8	11

#	Article	IF	CITATIONS
127	Adaptation of fibrous biopolymers to recurring increasing strains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12164-12165.	7.1	3
128	Molecular Mechanisms, Thermodynamics, and Dissociation Kinetics of Knob-Hole Interactions in Fibrin. Journal of Biological Chemistry, 2013, 288, 22681-22692.	3.4	25
129	Distinct Specificity and Single-molecule Kinetics Characterize the Interaction of Pathogenic and Non-pathogenic Antibodies against Platelet Factor 4-Heparin Complexes with Platelet Factor 4. Journal of Biological Chemistry, 2013, 288, 33060-33070.	3.4	24
130	Mechanisms of fibrin polymerization and clinical implications. Blood, 2013, 121, 1712-1719.	1.4	371
131	Structural Molecular Origins of Fibrin Mechanics. Biophysical Journal, 2013, 104, 59a.	0.5	0
132	Platelets lacking PIP5KlÎ ³ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion. Blood, 2013, 121, 2743-2752.	1.4	20
133	Molecular mechanisms and clinical significance of fibrinolysis. Kazan Medical Journal, 2013, 94, 711-718.	0.2	9
134	Polyhedrocytes: Compressed Polyhedral Erythrocytes In Contracted Blood Clots and Thrombi. Blood, 2013, 122, 452-452.	1.4	1
135	Resolving Two-dimensional Kinetics of the Integrin αllbβ3-Fibrinogen Interactions Using Binding-Unbinding Correlation Spectroscopy. Journal of Biological Chemistry, 2012, 287, 35275-35285.	3.4	36
136	Dynamic antibody-binding properties in the pathogenesis of HIT. Blood, 2012, 120, 1137-1142.	1.4	65
137	The α-Helix to β-Sheet Transition in Stretched and Compressed Hydrated Fibrin Clots. Biophysical Journal, 2012, 103, 1020-1027.	0.5	213
138	On the Mechanism of $\hat{I}\pm C$ Polymer Formation in Fibrin. Biochemistry, 2012, 51, 2526-2538.	2.5	45
139	Mechanical Transition from α-Helical Coiled Coils to β-Sheets in Fibrin(ogen). Journal of the American Chemical Society, 2012, 134, 20396-20402.	13.7	95
140	Bimolecular integrin–ligand interactions quantified using peptide-functionalized dextran-coated microparticles. Integrative Biology (United Kingdom), 2012, 4, 84-92.	1.3	9
141	Molecular Basis of Biomechanics of Hemostasis and Thrombosis: Structural Molecular Transitions Underlying Deformation of Fibrin Clots and Thrombi Blood, 2012, 120, 2217-2217.	1.4	0
142	Dissociation of Bimolecular αIIbβ3-Fibrinogen Complex under a Constant Tensile Force. Biophysical Journal, 2011, 100, 165-173.	0.5	58
143	Computational Design of a β-Peptide That Targets Transmembrane Helices. Journal of the American Chemical Society, 2011, 133, 12378-12381.	13.7	54
144	Mechanism of Fibrin(ogen) Forced Unfolding. Structure, 2011, 19, 1615-1624.	3.3	114

#	Article	IF	CITATIONS
145	Protein unfolding accounts for the unusual mechanical behavior of fibrin networks. Acta Biomaterialia, 2011, 7, 2374-2383.	8.3	75
146	Molecular Structural Origins of Clot and Thrombus Mechanical Properties. Blood, 2011, 118, 2257-2257.	1.4	3
147	The PLATELET INTEGRIN $\hat{1}$ ±llb $\hat{1}^2$ 3 CHANGES FROM A LOWER- to A Higher-AFFINITY STATE DURING INTERACTION with FIBRINOGEN. Blood, 2011, 118, 1130-1130.	1.4	0
148	What is vinculin needed for in platelets?. Journal of Thrombosis and Haemostasis, 2010, 8, 2294-2304.	3.8	23
149	Identification of Interacting Hot Spots in the β3 Integrin Stalk Using Comprehensive Interface Design. Journal of Biological Chemistry, 2010, 285, 38658-38665.	3.4	18
150	Single-Molecule Force Spectroscopy of the Interactions Between Platelet Integrin αIIbβ3 and Monomeric Fibrin. Biophysical Journal, 2010, 98, 244a.	0.5	0
151	Time-Dependent Single-Molecule Interactions of the Platelet Integrin αIIbβ3 with Cyclic Arg-Gly-Asp and the Fibrin(ogen) γC-Dodecapeptide. Blood, 2010, 116, 2103-2103.	1.4	2
152	Effects of Load and Contact Time on the Stability of Bimolecular Integrin-Fibrinogen Bonds Under a Constant Tensile Force. Biophysical Journal, 2009, 96, 595a.	0.5	0
153	Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water. Science, 2009, 325, 741-744.	12.6	346
154	Platelets Lacking PIP5KlÎ ³ Have Impaired Cytoskeletal Dynamics and Adhesion, but No Defect in Integrin Activation Blood, 2009, 114, 772-772.	1.4	4
155	Interaction of the Integrin αIlbβ3 with Monomeric Fibrin at the Single-Molecule Level Blood, 2009, 114, 4018.	1.4	0
156	Computationally Designed Peptide Inhibitors of Proteinâ^'Protein Interactions in Membranes. Biochemistry, 2008, 47, 8600-8606.	2.5	61
157	The Biochemical and Physical Process of Fibrinolysis and Effects of Clot Structure and Stability on the Lysis Rate. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2008, 6, 161-180.	1.0	132
158	Loss of PIP5KIγ, unlike other PIP5KI isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes. Journal of Clinical Investigation, 2008, 118, 812-9.	8.2	61
159	Multiscale Mechanics of Fibrin Clots. Blood, 2008, 112, 3089-3089.	1.4	Ο
160	Measurement of the Lifetime of Bonds Between αIIbβ3 and Fibrinogen Using Constant Unbinding Forces Generated by Optical Tweezers. Blood, 2008, 112, 254-254.	1.4	0
161	Loss of Individual PIP5KI Isoforms Demonstrate That Spatial PIP2 Synthesis Is Required for Platelet Second Messenger Formation & Integrity of the Actin Cytoskeleton. Blood, 2008, 112, 109-109.	1.4	0
162	Computational Design of Peptides That Target Transmembrane Helices. Science, 2007, 315, 1817-1822.	12.6	271

#	Article	IF	CITATIONS
163	Polymerization of fibrin: direct observation and quantification of individual B:b knob-hole interactions. Blood, 2007, 109, 130-138.	1.4	70
164	Direct Evidence for Specific Interactions of the Fibrinogen αC-Domains with the Central E Region and with Each Other. Biochemistry, 2007, 46, 9133-9142.	2.5	98
165	Forced Unfolding of Coiled-Coils in Fibrinogen by Single-Molecule AFM. Biophysical Journal, 2007, 92, L39-L41.	0.5	134
166	Interactions Mediated by the N-Terminus of Fibrinogen's Bβ Chainâ€. Biochemistry, 2006, 45, 14843-14852.	2.5	24
167	Activation of Individual αIIbβ3 Integrin Molecules by Disruption of Transmembrane Domain Interactions in the Absence of Clustering. Biochemistry, 2006, 45, 4957-4964.	2.5	21
168	Activation of Platelet αIIbβ3 by an Exogenous Peptide Corresponding to the Transmembrane Domain of αIIb*. Journal of Biological Chemistry, 2006, 281, 36732-36741.	3.4	49
169	Regulation of the Function of αvβ3 in Platelets by a Designed Peptide Targeting the αv Transmembrane Domain Blood, 2006, 108, 1504-1504.	1.4	7
170	PIP5KIÎ ³ Knockout Megakaryocytes Have Defects in Their Cytoskeleton & Demarcation Membrane System, yet Form Proplatlets & Platelets Blood, 2006, 108, 1793-1793.	1.4	0
171	Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level. Blood, 2005, 106, 2944-2951.	1.4	109
172	Multi-Step Fibrinogen Binding to the Integrin αIIbβ3 Detected Using Force Spectroscopy. Biophysical Journal, 2005, 89, 2824-2834.	0.5	72
173	Activation of Platelet \hat{I}_{\pm} lib \hat{I}^2 3 by Exogenous Peptides Corresponding to the Transmembrane Domains of \hat{I}_{\pm} lib and \hat{I}^2 3 Blood, 2005, 106, 384-384.	1.4	4
174	Binding Site Specificity, Mechanics, and Kinetics of Bimolecular Interactions Underlying Fibrin Polymerization Blood, 2005, 106, 1955-1955.	1.4	0
175	Mice Lacking PIP5Kβ or PIP5Kγ Have Unique Cytoskeletal Changes within Their Megakaryocytes & Platelets Blood, 2005, 106, 380-380.	1.4	1
176	Additional considerations on measuring the binding strength of single ligand-receptor pairs on cells: reply to a rebuttal. Journal of Thrombosis and Haemostasis, 2004, 2, 1494-1496.	3.8	0
177	Measuring the binding strength of single ligand-receptor pairs on cells: rebuttal. Journal of Thrombosis and Haemostasis, 2004, 2, 372-374.	3.8	23
178	Functional and structural correlations of individual $\hat{I}\pm IIb\hat{I}^2$ 3 molecules. Blood, 2004, 104, 3979-3985.	1.4	65
179	Multi-Step Fibrinogen-αIlbβ3 Binding/Unbinding Revealed at the Single Molecule Level Using Laser Tweezers Blood, 2004, 104, 623-623.	1.4	0
180	Measuring the binding strength of single ligand-receptor pairs on cells: rebuttal. Journal of Thrombosis and Haemostasis, 2004, 2, 372-4; author reply 374-7.	3.8	0

#	Article	IF	CITATIONS
181	Protein–protein unbinding induced by force: single-molecule studies. Current Opinion in Structural Biology, 2003, 13, 227-235.	5.7	133
182	Activation of Integrin alphallbbeta3 by Modulation of Transmembrane Helix Associations. Science, 2003, 300, 795-798.	12.6	284
183	Quantitative Analysis of Platelet αvβ3 Binding to Osteopontin Using Laser Tweezers. Journal of Biological Chemistry, 2003, 278, 51285-51290.	3.4	22
184	Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7426-7431.	7.1	186
185	Clinical and pathophysiological aspects of disseminated intravascular coagulation. Kazan Medical Journal, 2000, 81, 48-55.	0.2	Ο
186	Achievements and challenges in tobacco control in the United States. Kazan Medical Journal, 2000, 81, 441-443.	0.2	0
187	Tensometric study of the effect of exogenous fibronectin on skin wound healing. Bulletin of Experimental Biology and Medicine, 1987, 104, 1736-1738.	0.8	1
188	Interaction of fibronectin with polymorphonuclear leukocytes under normal conditions and in anaphylactic shock. Bulletin of Experimental Biology and Medicine, 1986, 102, 1401-1403.	0.8	0
189	III All-Union Congress of Laboratory Doctors. Kazan Medical Journal, 1986, 67, 68-70.	0.2	Ο
190	Alveolar macrophage-fibronectin interaction in sensitization and anaphylactic shock. Bulletin of Experimental Biology and Medicine, 1985, 100, 1246-1249.	0.8	0
191	Antithrombotic therapy in clinical practice, new in theory, diagnosis, treatment. Kazan Medical Journal, 1983, 64, 78-79.	0.2	0
192	Fibronectin and its receptors on the surface of polymorphs. Bulletin of Experimental Biology and Medicine, 1982, 94, 961-963.	0.8	0
193	Characterization of the ethanol and beta-naphthol precipitable proteins from pathological human plasma. Thrombosis Research, 1981, 21, 227-236.	1.7	0