Rustem I Litvinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7488668/publications.pdf

Version: 2024-02-01

193 papers 7,003 citations

43 h-index 64796 79 g-index

201 all docs

201 docs citations

times ranked

201

6650 citing authors

#	Article	IF	Citations
1	Fibrin Formation, Structure and Properties. Sub-Cellular Biochemistry, 2017, 82, 405-456.	2.4	434
2	Mechanisms of fibrin polymerization and clinical implications. Blood, 2013, 121, 1712-1719.	1.4	371
3	Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water. Science, 2009, 325, 741-744.	12.6	346
4	Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood, 2014, 123, 1596-1603.	1.4	311
5	Activation of Integrin alphallbbeta3 by Modulation of Transmembrane Helix Associations. Science, 2003, 300, 795-798.	12.6	284
6	Computational Design of Peptides That Target Transmembrane Helices. Science, 2007, 315, 1817-1822.	12.6	271
7	Red blood cells: the forgotten player in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 2019, 17, 271-282.	3.8	263
8	The \hat{i}_{\pm} -Helix to \hat{i}^{2} -Sheet Transition in Stretched and Compressed Hydrated Fibrin Clots. Biophysical Journal, 2012, 103, 1020-1027.	0.5	213
9	Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7426-7431.	7.1	186
10	Fibrin mechanical properties and their structural origins. Matrix Biology, 2017, 60-61, 110-123.	3.6	145
11	The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Scientific Reports, 2020, 10, 5112.	3.3	145
12	Role of red blood cells in haemostasis and thrombosis. ISBT Science Series, 2017, 12, 176-183.	1.1	136
13	Forced Unfolding of Coiled-Coils in Fibrinogen by Single-Molecule AFM. Biophysical Journal, 2007, 92, L39-L41.	0.5	134
14	Protein–protein unbinding induced by force: single-molecule studies. Current Opinion in Structural Biology, 2003, 13, 227-235.	5.7	133
15	Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood, 2016, 127, 149-159.	1.4	133
16	The Biochemical and Physical Process of Fibrinolysis and Effects of Clot Structure and Stability on the Lysis Rate. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2008, 6, 161-180.	1.0	132
17	Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nature Communications, 2017, 8, 1274.	12.8	115
18	Mechanism of Fibrin(ogen) Forced Unfolding. Structure, 2011, 19, 1615-1624.	3.3	114

#	Article	IF	CITATIONS
19	Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials, 2014, 35, 6739-6749.	11.4	110
20	Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level. Blood, 2005, 106, 2944-2951.	1.4	109
21	Direct Evidence for Specific Interactions of the Fibrinogen $\hat{l}\pm C$ -Domains with the Central E Region and with Each Other. Biochemistry, 2007, 46, 9133-9142.	2.5	98
22	What Is the Biological and Clinical Relevance of Fibrin?. Seminars in Thrombosis and Hemostasis, 2016, 42, 333-343.	2.7	96
23	Mechanical Transition from \hat{l}_{\pm} -Helical Coiled Coils to \hat{l}^2 -Sheets in Fibrin(ogen). Journal of the American Chemical Society, 2012, 134, 20396-20402.	13.7	95
24	Contraction of Blood Clots Is Impaired in Acute Ischemic Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 271-279.	2.4	87
25	Circulating Microparticles Alter Formation, Structure and Properties of Fibrin Clots. Scientific Reports, 2015, 5, 17611.	3.3	76
26	Protein unfolding accounts for the unusual mechanical behavior of fibrin networks. Acta Biomaterialia, 2011, 7, 2374-2383.	8.3	75
27	Multi-Step Fibrinogen Binding to the Integrin αllbβ3 Detected Using Force Spectroscopy. Biophysical Journal, 2005, 89, 2824-2834.	0.5	72
28	Intracellular origin and ultrastructure of plateletâ€derived microparticles. Journal of Thrombosis and Haemostasis, 2017, 15, 1655-1667.	3.8	71
29	Polymerization of fibrin: direct observation and quantification of individual B:b knob-hole interactions. Blood, 2007, 109, 130-138.	1.4	70
30	Functional and structural correlations of individual αIIbβ3 molecules. Blood, 2004, 104, 3979-3985.	1.4	65
31	Dynamic antibody-binding properties in the pathogenesis of HIT. Blood, 2012, 120, 1137-1142.	1.4	65
32	The Platelet Integrin $\hat{l}\pm Ilb\hat{l}^23$ Differentially Interacts with Fibrin Versus Fibrinogen. Journal of Biological Chemistry, 2016, 291, 7858-7867.	3.4	62
33	Computationally Designed Peptide Inhibitors of Proteinâ [^] Protein Interactions in Membranes. Biochemistry, 2008, 47, 8600-8606.	2.5	61
34	Loss of PIP5KIÎ ³ , unlike other PIP5KI isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes. Journal of Clinical Investigation, 2008, 118, 812-9.	8.2	61
35	Dissociation of Bimolecular αIIbβ3-Fibrinogen Complex under a Constant Tensile Force. Biophysical Journal, 2011, 100, 165-173.	0.5	58
36	Blood clot contraction differentially modulates internal and external fibrinolysis. Journal of Thrombosis and Haemostasis, 2019, 17, 361-370.	3.8	57

#	Article	IF	Citations
37	Computational Design of a \hat{l}^2 -Peptide That Targets Transmembrane Helices. Journal of the American Chemical Society, 2011, 133, 12378-12381.	13.7	54
38	Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. Journal of the Royal Society Interface, 2017, 14, 20170441.	3.4	54
39	Rupture of blood clots: Mechanics and pathophysiology. Science Advances, 2020, 6, eabc0496.	10.3	54
40	Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Scientific Reports, 2018, 8, 17907.	3.3	53
41	Foam-like compression behavior of fibrin networks. Biomechanics and Modeling in Mechanobiology, 2016, 15, 213-228.	2.8	50
42	Activation of Platelet $\hat{l}\pm IIb\hat{l}^23$ by an Exogenous Peptide Corresponding to the Transmembrane Domain of $\hat{l}\pm IIb^*$. Journal of Biological Chemistry, 2006, 281, 36732-36741.	3.4	49
43	Neutrophil \hat{l} ±-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood, 2019, 133, 481-493.	1.4	48
44	Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism. TH Open, 2018, 02, e104-e115.	1.4	46
45	On the Mechanism of αC Polymer Formation in Fibrin. Biochemistry, 2012, 51, 2526-2538.	2.5	45
46	Interplay of Platelet Contractility and Elasticity of Fibrin/Erythrocytes in Blood Clot Retraction. Biophysical Journal, 2017, 112, 714-723.	0.5	41
47	Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke. Stroke, 2020, 51, 3640-3650.	2.0	40
48	Fibrinogen and Fibrin. Sub-Cellular Biochemistry, 2021, 96, 471-501.	2.4	38
49	Resolving Two-dimensional Kinetics of the Integrin αllbβ3-Fibrinogen Interactions Using Binding-Unbinding Correlation Spectroscopy. Journal of Biological Chemistry, 2012, 287, 35275-35285.	3.4	36
50	Compression-induced structural and mechanical changes of fibrin-collagen composites. Matrix Biology, 2017, 60-61, 141-156.	3.6	36
51	Structural Basis of Interfacial Flexibility in Fibrin Oligomers. Structure, 2016, 24, 1907-1917.	3.3	35
52	Morphometric characterization of fibrinogen's $\hat{l}\pm C$ regions and their role in fibrin self-assembly and molecular organization. Nanoscale, 2017, 9, 13707-13716.	5.6	35
53	Platelet factor 4-containing immune complexes induce platelet activation followed by calpain-dependent platelet death. Cell Death Discovery, 2019, 5, 106.	4.7	35
54	Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clinical Science, 2018, 132, 243-254.	4.3	34

#	Article	lF	Citations
55	Atomic Structural Models of Fibrin Oligomers. Structure, 2018, 26, 857-868.e4.	3.3	33
56	Conformational Flexibility and Self-Association of Fibrinogen in Concentrated Solutions. Journal of Physical Chemistry B, 2017, 121, 7833-7843.	2.6	29
57	Pathology of lungâ€specific thrombosis and inflammation in COVIDâ€19. Journal of Thrombosis and Haemostasis, 2021, 19, 3062-3072.	3.8	28
58	Mechanistic Basis for the Binding of RGD- and AGDV-Peptides to the Platelet Integrin $\hat{l}\pm IIb\hat{l}^23$. Biochemistry, 2017, 56, 1932-1942.	2.5	27
59	Strong Binding of Platelet Integrin \hat{l} ±Ilb \hat{l} 23 to Fibrin Clots: Potential Target to Destabilize Thrombi. Scientific Reports, 2017, 7, 13001.	3.3	27
60	Fatal dysfunction and disintegration of thrombin-stimulated platelets. Haematologica, 2019, 104, 1866-1878.	3. 5	27
61	T2 Magnetic Resonance: A Diagnostic Platform for Studying Integrated Hemostasis in Whole Blood—Proof of Concept. Clinical Chemistry, 2014, 60, 1174-1182.	3.2	26
62	Molecular Mechanisms, Thermodynamics, and Dissociation Kinetics of Knob-Hole Interactions in Fibrin. Journal of Biological Chemistry, 2013, 288, 22681-22692.	3.4	25
63	Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression. Scientific Reports, 2017, 7, 5149.	3.3	25
64	Interactions Mediated by the N-Terminus of Fibrinogen's Bβ Chainâ€. Biochemistry, 2006, 45, 14843-14852.	2.5	24
65	Distinct Specificity and Single-molecule Kinetics Characterize the Interaction of Pathogenic and Non-pathogenic Antibodies against Platelet Factor 4-Heparin Complexes with Platelet Factor 4. Journal of Biological Chemistry, 2013, 288, 33060-33070.	3.4	24
66	Altered platelet and coagulation function in moderate-to-severe COVID-19. Scientific Reports, 2021, 11, 16290.	3.3	24
67	Measuring the binding strength of single ligand-receptor pairs on cells: rebuttal. Journal of Thrombosis and Haemostasis, 2004, 2, 372-374.	3.8	23
68	What is vinculin needed for in platelets?. Journal of Thrombosis and Haemostasis, 2010, 8, 2294-2304.	3.8	23
69	Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8575-8580.	7.1	23
70	In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation. Journal of Autoimmunity, 2020, 107, 102355.	6.5	23
71	Quantitative Analysis of Platelet $\hat{l}\pm\hat{vl^2}$ 3 Binding to Osteopontin Using Laser Tweezers. Journal of Biological Chemistry, 2003, 278, 51285-51290.	3.4	22
72	Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load. Acta Biomaterialia, 2019, 94, 514-523.	8.3	22

#	Article	IF	Citations
73	Pathologically stiff erythrocytes impede contraction of blood clots. Journal of Thrombosis and Haemostasis, 2021, 19, 1990-2001.	3.8	22
74	Activation of Individual αIIbÎ ² 3 Integrin Molecules by Disruption of Transmembrane Domain Interactions in the Absence of Clustering. Biochemistry, 2006, 45, 4957-4964.	2.5	21
75	Platelets lacking PIP5Klγ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion. Blood, 2013, 121, 2743-2752.	1.4	20
76	Factor XIII topology: organization of B subunits and changes with activation studied with singleâ€molecule atomic force microscopy. Journal of Thrombosis and Haemostasis, 2019, 17, 737-748.	3.8	20
77	Visualizing thrombosis to improve thrombus resolution. Research and Practice in Thrombosis and Haemostasis, 2021, 5, 38-50.	2.3	20
78	Lytic Susceptibility, Structure, and Mechanical Properties of Fibrin in Systemic Lupus Erythematosus. Frontiers in Immunology, 2019, 10, 1626.	4.8	19
79	Identification of Interacting Hot Spots in the \hat{I}^2 3 Integrin Stalk Using Comprehensive Interface Design. Journal of Biological Chemistry, 2010, 285, 38658-38665.	3.4	18
80	Impaired contraction of blood clots precedes and predicts postoperative venous thromboembolism. Scientific Reports, 2020, 10, 18261.	3.3	18
81	Morphological Signs of Intravital Contraction (Retraction) of Pulmonary Thrombotic Emboli. BioNanoScience, 2018, 8, 428-433.	3.5	17
82	Premorbid Hemostasis in Women with a History of Pregnancy Loss. Thrombosis and Haemostasis, 2019, 119, 1994-2004.	3.4	16
83	Use of electron microscopy to study platelets and thrombi. Platelets, 2020, 31, 580-588.	2.3	14
84	Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2022, 10, 796111.	4.1	14
85	An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111321.	5.0	13
86	Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling. Soft Matter, 2020, 16, 8272-8283.	2.7	13
87	Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture. Acta Biomaterialia, 2021, 131, 355-369.	8.3	13
88	Accelerated Spatial Fibrin Growth and Impaired Contraction of Blood Clots in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 2020, 21, 9434.	4.1	12
89	Shear strengthens fibrin: the knob–hole interactions display â€~catchâ€slip' kinetics. Journal of Thrombosis and Haemostasis, 2013, 11, 1933-1935.	3.8	11
90	Contraction of Blood Clots Is Impaired in Deep Vein Thrombosis. BioNanoScience, 2016, 6, 457-459.	3.5	11

#	Article	IF	CITATIONS
91	Extent of intravital contraction of arterial and venous thrombi andÂpulmonary emboli. Blood Advances, 2022, 6, 1708-1718.	5.2	11
92	Bimolecular integrin–ligand interactions quantified using peptide-functionalized dextran-coated microparticles. Integrative Biology (United Kingdom), 2012, 4, 84-92.	1.3	9
93	Age-Dependent Differential Staining of Fibrin in Blood Clots and Thrombi. BioNanoScience, 2020, 10, 370-374.	3.5	9
94	Molecular mechanisms and clinical significance of fibrinolysis. Kazan Medical Journal, 2013, 94, 711-718.	0.2	9
95	Automated Fiber Diameter and Porosity Measurements of Plasma Clots in Scanning Electron Microscopy Images. Biomolecules, 2021, 11, 1536.	4.0	9
96	Cleavage of talin by calpain promotes platelet-mediated fibrin clot contraction. Blood Advances, 2021, 5, 4901-4909.	5.2	8
97	Not fibrin(ogen), but fibrinogen or fibrin. Blood, 2015, 126, 1977-1978.	1.4	7
98	An anti-DNA antibody prefers damaged dsDNA over native. Journal of Biomolecular Structure and Dynamics, 2017, 35, 219-232.	3.5	7
99	Unique transmembrane domain interactions differentially modulate integrin $\hat{l}\pm v\hat{l}^2$ 3 and $\hat{l}\pm llb\hat{l}^2$ 3 function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12295-12300.	7.1	7
100	Platelet Activation in Heparin-Induced Thrombocytopenia is Followed by Platelet Death via Complex Apoptotic and Non-Apoptotic Pathways. International Journal of Molecular Sciences, 2020, 21, 2556.	4.1	7
101	Effects of Hyperhomocysteinemia on the Platelet-Driven Contraction of Blood Clots. Metabolites, 2021, 11, 354.	2.9	7
102	Regulation of the Function of $\hat{l}\pm\nu\hat{l}^23$ in Platelets by a Designed Peptide Targeting the $\hat{l}\pm\nu$ Transmembrane Domain Blood, 2006, 108, 1504-1504.	1.4	7
103	Percutaneous delivery of self-propelling hemostatic powder for managing non-compressible abdominal hemorrhage: a proof-of-concept study in swine. Injury, 2022, 53, 1603-1609.	1.7	7
104	An Automated Approach for Fibrin Network Segmentation and Structure Identification in 3D Confocal Microscopy Images. , 2014, , .		6
105	Structural characterization of platelets and platelet microvesicles. Cell and Tissue Biology, 2016, 10, 217-226.	0.4	6
106	Biomechanical origins of inherent tension in fibrin networks. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105328.	3.1	6
107	Chronic Immune Platelet Activation Is Followed by Platelet Refractoriness and Impaired Contractility. International Journal of Molecular Sciences, 2022, 23, 7336.	4.1	6
108	Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazan Medical Journal, 2020, 101, 485-488.	0.2	5

7

#	Article	IF	Citations
109	Contraction of blood clots and thrombi: pathogenic and clinical significance. Alʹmanah KliniÄeskoj Mediciny, 2018, 46, 662-671.	0.3	5
110	Activation of Platelet $\hat{l}\pm$ lib \hat{l}^2 3 by Exogenous Peptides Corresponding to the Transmembrane Domains of $\hat{l}\pm$ lib and \hat{l}^2 3 Blood, 2005, 106, 384-384.	1.4	4
111	Platelets Lacking PIP5Klγ Have Impaired Cytoskeletal Dynamics and Adhesion, but No Defect in Integrin Activation Blood, 2009, 114, 772-772.	1.4	4
112	Contribution of septins to human platelet structure and function. IScience, 2022, , 104654.	4.1	4
113	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2022 Congress. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12747.	2.3	4
114	Adaptation of fibrous biopolymers to recurring increasing strains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12164-12165.	7.1	3
115	Effect of blood microparticles on the kinetics of polymerization and enzymatic hydrolysis of fibrin. Doklady Biochemistry and Biophysics, 2015, 462, 151-154.	0.9	3
116	Cellular Microvesicles in the Blood of Patients with Systemic Lupus Erythematosus. BioNanoScience, 2018, 8, 441-445.	3.5	3
117	Differential Sensitivity of Various Markers of Platelet Activation with Adenosine Diphosphate. BioNanoScience, 2019, 9, 53-58.	3.5	3
118	Molecular Structural Origins of Clot and Thrombus Mechanical Properties. Blood, 2011, 118, 2257-2257.	1.4	3
119	Dependence of clot contraction (retraction) on the molecular and cellular blood composition. Kazan Medical Journal, 2016, 97, 70-77.	0.2	3
120	Fibrin Clot Structure and Properties are Altered in Systemic Lupus Erythematosus. BioNanoScience, 2016, 6, 345-347.	3.5	2
121	Keeping it clean: clot biofilm to wall out bacterial invasion. Journal of Thrombosis and Haemostasis, 2018, 16, 2359-2361.	3.8	2
122	Multi-Scale Models of Deformation of Blood Clots. Biophysical Journal, 2019, 116, 323a.	0.5	2
123	Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid. Biochemistry, 2021, 60, 1722-1730.	2.5	2
124	Time-Dependent Single-Molecule Interactions of the Platelet Integrin $\hat{l}\pm IIb\hat{l}^2$ 3 with Cyclic Arg-Gly-Asp and the Fibrin(ogen) \hat{l}^3 C-Dodecapeptide. Blood, 2010, 116, 2103-2103.	1.4	2
125	Erythrocyte Rigidity Affects Blood Clot Contraction and Formation of Polyhedrocytes. Blood, 2016, 128, 3814-3814.	1.4	2
126	CHANGES IN THE PARAMETERS OF THROMBODYNAMICS AND BLOOD CLOT CONTRACTION IN PATIENTS WITH RHEUMATOID ARTHRITIS. Nauchno-Prakticheskaya Revmatologiya, 2020, 58, 294-303.	1.0	2

#	Article	IF	CITATIONS
127	Pathogenesis, Diagnosis, and Treatment of Hemostatic Disorders in COVID-19 Patients. Acta Naturae, 2021, 13, 79-84.	1.7	2
128	Tensometric study of the effect of exogenous fibronectin on skin wound healing. Bulletin of Experimental Biology and Medicine, 1987, 104, 1736-1738.	0.8	1
129	Compressive Mechanics of Collagen-Fibrin Composites and Their Structural Alterations. Biophysical Journal, 2016, 110, 338a.	0.5	1
130	Active Dynamic Mechanics of Blood Clot Contraction. Biophysical Journal, 2016, 110, 305a-306a.	0.5	1
131	Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment. Molecular Biology, 2016, 50, 442-451.	1.3	1
132	Blood Clot Contraction is Reduced in Sickle Cell Disease due to Increased Rigidity of Erythrocytes. Biophysical Journal, 2018, 114, 540a-541a.	0.5	1
133	Mechanical Contraction of Blood Clots Impaired Due to Platelet Dysfunction and Disintegration. Biophysical Journal, 2019, 116, 416a.	0.5	1
134	Could Some Nonhemostatic Plasma Proteins Serve as Refuse Collectors for Fibrin(ogen)?. Thrombosis and Haemostasis, 2019, 119, 1900-1900.	3.4	1
135	Use of Modified Graphite for Single-Molecule Atomic Force Microscopy of Biomacromolecules. Biophysical Journal, 2019, 116, 428a.	0.5	1
136	Quantitative and qualitative changes in blood cells associated with COVID-19. Kazan Medical Journal, 2021, 102, 141-155.	0.2	1
137	Microparticles Modulate Formation, Structure, and Properties of Fibrin Clots. Blood, 2014, 124, 2807-2807.	1.4	1
138	Blood Clot Contraction (Retraction) Is Impaired in Acute Ischemic Stroke. Blood, 2016, 128, 4998-4998.	1.4	1
139	Mice Lacking PIP5K \hat{I}^2 or PIP5K \hat{I}^3 Have Unique Cytoskeletal Changes within Their Megakaryocytes & Platelets Blood, 2005, 106, 380-380.	1.4	1
140	Polyhedrocytes: Compressed Polyhedral Erythrocytes In Contracted Blood Clots and Thrombi. Blood, 2013, 122, 452-452.	1.4	1
141	Membrane Remodeling By Pathogenic Antibodies Underlies Monocyte Activation in Heparin-Induced Thrombocytopenia. Blood, 2015, 126, 2244-2244.	1.4	1
142	Spatial Structure of Plasma Coagulation Factor XIII and Changes with Activation. Blood, 2018, 132, 19-19.	1.4	1
143	Differential sensitivity of various markers of platelet activation with adenosine diphosphate. BioNanoScience, 2019, 9, 53-58.	3.5	1
144	Characterization of the ethanol and beta-naphthol precipitable proteins from pathological human plasma. Thrombosis Research, 1981, 21, 227-236.	1.7	0

#	Article	IF	CITATIONS
145	Fibronectin and its receptors on the surface of polymorphs. Bulletin of Experimental Biology and Medicine, 1982, 94, 961-963.	0.8	O
146	Alveolar macrophage-fibronectin interaction in sensitization and anaphylactic shock. Bulletin of Experimental Biology and Medicine, 1985, 100, 1246-1249.	0.8	0
147	Interaction of fibronectin with polymorphonuclear leukocytes under normal conditions and in anaphylactic shock. Bulletin of Experimental Biology and Medicine, 1986, 102, 1401-1403.	0.8	O
148	Additional considerations on measuring the binding strength of single ligand-receptor pairs on cells: reply to a rebuttal. Journal of Thrombosis and Haemostasis, 2004, 2, 1494-1496.	3.8	0
149	Effects of Load and Contact Time on the Stability of Bimolecular Integrin-Fibrinogen Bonds Under a Constant Tensile Force. Biophysical Journal, 2009, 96, 595a.	0.5	O
150	Single-Molecule Force Spectroscopy of the Interactions Between Platelet Integrin αIIbβ3 and Monomeric Fibrin. Biophysical Journal, 2010, 98, 244a.	0.5	0
151	Structural Molecular Origins of Fibrin Mechanics. Biophysical Journal, 2013, 104, 59a.	0.5	0
152	Fibrinogen Hydrodynamic Properties from NMR-Diffusion Studies. Biophysical Journal, 2015, 108, 48a.	0.5	0
153	Force Spectroscopy of Interactions of the Integrin Alphallbbeta3 with Fibrin and Fibrinogen. Biophysical Journal, 2016, 110, 385a.	0.5	0
154	Abnormal Ultrastructure of the Platelet Plasma Membrane in Systemic Lupus Erythematosus. BioNanoScience, 2016, 6, 361-363.	3.5	0
155	Essential Dynamics of DNA-Antibody Complexes. BioNanoScience, 2016, 6, 543-549.	3.5	0
156	Comparison of the RGD- and AGDV-Containing Peptide Interactions with the Platelet Integrin Alphaiibbeta 3. Biophysical Journal, 2017, 112, 350a.	0.5	0
157	Interaction of Anti-DNA Antibody MRL4 with DNA Studied at the Single-Molecule Level. Biophysical Journal, 2017, 112, 517a-518a.	0.5	0
158	Hyperfibrinogenemia and Increased Stiffness of Plasma Clots in the Active Systemic Lupus Erythematosus. BioNanoScience, 2017, 7, 640-643.	3.5	0
159	Autoantibodies Against dsDNA Modulate Contraction of Blood Clots. BioNanoScience, 2017, 7, 633-635.	3.5	0
160	Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA. BioNanoScience, 2017, 7, 132-147.	3.5	0
161	Structural Alterations of Monocytes in Systemic Lupus Erythematosus. BioNanoScience, 2017, 7, 636-639.	3.5	0
162	Single-Molecule Atomic Force Microscopy of Blood Coagulation Factor XIII and its Subunits. Biophysical Journal, 2018, 114, 569a-570a.	0.5	0

#	Article	IF	Citations
163	Non-Enzymatic Self-Association of Fibrinogen in Solution Studied with 1H NMR Spectrometry. Biophysical Journal, 2018, 114, 407a.	0.5	0
164	Fibrin opens the "gate―for leukocytes in the endothelium. Thrombosis Research, 2018, 162, 101-103.	1.7	0
165	Molecular Mechanisms of Transition from Catch to Slip Bonds in Fibrin. Biophysical Journal, 2019, 116, 342a.	0.5	0
166	Viability, Ultrastructure, and Migration Activity of Neutrophils after Phagocytosis of Synthetic Microcapsules. Cell and Tissue Biology, 2020, 14, 275-285.	0.4	0
167	Pathologically stiff erythrocytes impede contraction of blood clots: Reply to comment. Journal of Thrombosis and Haemostasis, 2021, 19, 2894-2895.	3.8	0
168	Multi-Step Fibrinogen- $\hat{l}\pm Ilb\hat{l}^2$ 3 Binding/Unbinding Revealed at the Single Molecule Level Using Laser Tweezers Blood, 2004, 104, 623-623.	1.4	0
169	Binding Site Specificity, Mechanics, and Kinetics of Bimolecular Interactions Underlying Fibrin Polymerization Blood, 2005, 106, 1955-1955.	1.4	0
170	PIP5KlÎ ³ Knockout Megakaryocytes Have Defects in Their Cytoskeleton & Demarcation Membrane System, yet Form Proplatlets & Platelets Blood, 2006, 108, 1793-1793.	1.4	0
171	Multiscale Mechanics of Fibrin Clots. Blood, 2008, 112, 3089-3089.	1.4	0
172	Measurement of the Lifetime of Bonds Between $\hat{l}\pm llb\hat{l}^23$ and Fibrinogen Using Constant Unbinding Forces Generated by Optical Tweezers. Blood, 2008, 112, 254-254.	1.4	0
173	Loss of Individual PIP5KI Isoforms Demonstrate That Spatial PIP2 Synthesis Is Required for Platelet Second Messenger Formation & Second Messenger & Second Mess	1.4	0
174	Interaction of the Integrin \hat{l} ±Ilb \hat{l} 23 with Monomeric Fibrin at the Single-Molecule Level Blood, 2009, 114, 4018-4018.	1.4	0
175	The PLATELET INTEGRIN αIIbβ3 CHANGES FROM A LOWER- to A Higher-AFFINITY STATE DURING INTERACTION with FIBRINOGEN. Blood, 2011, 118, 1130-1130.	1.4	0
176	Molecular Basis of Biomechanics of Hemostasis and Thrombosis: Structural Molecular Transitions Underlying Deformation of Fibrin Clots and Thrombi Blood, 2012, 120, 2217-2217.	1.4	0
177	III All-Union Congress of Laboratory Doctors. Kazan Medical Journal, 1986, 67, 68-70.	0.2	0
178	Effects of Platelets and Erythrocytes on the Dynamic Size and Mechanical Properties of Blood Clots during Contraction. Blood, 2014, 124, 4225-4225.	1.4	0
179	Blood Clot Contraction Dynamics Studied with an Automated Analyzer System. Blood, 2014, 124, 2796-2796.	1.4	0
180	Anti-Apoptotic Effects of Platelet Factor 4 on Human T-Lymphocytes. Blood, 2014, 124, 1418-1418.	1.4	0

#	Article	IF	CITATIONS
181	The Platelet Integrin alphallbbeta3 Differentially Interacts with Fibrin and Fibrinogen. Blood, 2015, 126, 3444-3444.	1.4	O
182	Characterization of the Interactions of Arg-Gly-Asp- and Ala-Gly-Asp-Val-Containing Peptides with the Platelet Integrin $\hat{l}\pm Ilb\hat{l}^23$. Blood, 2016, 128, 1350-1350.	1.4	0
183	Apoptosis Might Contribute to the Thrombocytopenia in Heparin-Induced Thrombocytopenia. Blood, 2016, 128, 2545-2545.	1.4	O
184	Morphological signs of the intravital contraction (retraction) of thrombotic emboli. Kazan Medical Journal, 2018, 99, 42-47.	0.2	0
185	Fatal Dysfunction and Fragmentation of Thrombin-Stimulated Platelets. Blood, 2018, 132, 521-521.	1.4	0
186	Fibrinolysis of Contracted Blood Clots Depends on Whether Plasminogen Activator Acts from inside or Outside. Blood, 2018, 132, 3773-3773.	1.4	0
187	Active Calpain Promotes Fibrin Clot Contraction By Strengthening the Coupling of Fibrin-Bound αIIbβ3 to the Platelet Cytoskeleton. Blood, 2018, 132, 1128-1128.	1.4	0
188	A case of arterial thrombosis with formation of an atypical fibrin-rich thrombus. Kazan Medical Journal, 2018, 99, 994-997.	0.2	0
189	Measuring the binding strength of single ligand-receptor pairs on cells: rebuttal. Journal of Thrombosis and Haemostasis, 2004, 2, 372-4; author reply 374-7.	3.8	O
190	Clinical and pathophysiological aspects of disseminated intravascular coagulation. Kazan Medical Journal, 2000, 81, 48-55.	0.2	0
191	Achievements and challenges in tobacco control in the United States. Kazan Medical Journal, 2000, 81, 441-443.	0.2	0
192	Peculiarities of blood coagulation disorders in patients with COVID-19. Terapevticheskii Arkhiv, 2021, 93, 1255-1263.	0.8	0
193	Antithrombotic therapy in clinical practice, new in theory, diagnosis, treatment. Kazan Medical Journal, 1983, 64, 78-79.	0.2	o