Nel Otting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7486953/publications.pdf

Version: 2024-02-01

233421 236925 2,117 49 25 45 h-index citations g-index papers 51 51 51 1289 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics, 2020, 72, 25-36.	2.4	17
2	Fullâ€length MHC class II alleles in three New World monkey species. Hla, 2020, 95, 163-165.	0.6	0
3	Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics, 2020, 72, 37-47.	2.4	14
4	Unparalleled Rapid Evolution of KIR Genes in Rhesus and Cynomolgus Macaque Populations. Journal of Immunology, 2020, 204, 1770-1786.	0.8	12
5	The HLA A03 Supertype and Several Pan Species Major Histocompatibility Complex Class I A Allotypes Share a Preference for Binding Positively Charged Residues in the F Pocket: Implications for Controlling Retroviral Infections. Journal of Virology, 2020, 94, .	3.4	2
6	Limited MHC class II gene polymorphism in the West African chimpanzee is distributed maximally by haplotype diversity. Immunogenetics, 2019, 71, 13-23.	2.4	8
7	Human and Rhesus MacaqueKIRHaplotypes Defined by Their Transcriptomes. Journal of Immunology, 2018, 200, ji1701480.	0.8	23
8	Extensive Alternative Splicing of KIR Transcripts. Frontiers in Immunology, 2018, 9, 2846.	4.8	32
9	Limited MHC class I intron 2 repertoire variation in bonobos. Immunogenetics, 2017, 69, 677-688.	2.4	15
10	A Specialist Macaque MHC Class I Molecule with HLA-B*27–like Peptide-Binding Characteristics. Journal of Immunology, 2017, 199, 3679-3690.	0.8	11
11	The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics, 2017, 69, 87-99.	2.4	15
12	Spontaneous endometriosis in rhesus macaques: evidence for a genetic association with specific Mamu-A1 alleles. Primate Biology, 2017, 4, 117-125.	1.0	1
13	Coâ€evolution of the <scp>MHC</scp> class I and <scp>KIR</scp> gene families in rhesus macaques: ancestry and plasticity. Immunological Reviews, 2015, 267, 228-245.	6.0	35
14	Differential recombination dynamics within the MHC of macaque species. Immunogenetics, 2014, 66, 535-544.	2.4	14
15	Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics, 2013, 65, 569-584.	2.4	44
16	Unique peptide-binding motif for Mamu-B*037:01: an MHC class I allele common to Indian and Chinese rhesus macaques. Immunogenetics, 2013, 65, 897-900.	2.4	5
17	The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics, 2013, 65, 841-849.	2.4	21
18	Multilocus definition of MHC haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis). Immunogenetics, 2012, 64, 755-765.	2.4	15

#	Article	IF	CITATIONS
19	Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics, 2012, 64, 615-631.	2.4	82
20	DR haplotype diversity of the cynomolgus macaque as defined by its transcriptome. Immunogenetics, 2012, 64, 31-37.	2.4	14
21	Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics, 2011, 63, 73-83.	2.4	42
22	Immunization with Recombinant HLA Classes I and II, HIV-1 gp140, and SIV p27 Elicits Protection against Heterologous SHIV Infection in Rhesus Macaques. Journal of Virology, 2011, 85, 6442-6452.	3.4	16
23	No difference in Gag and Env immune-response profiles between vaccinated and non-vaccinated rhesus macaques that control immunodeficiency virus replication. Journal of General Virology, 2010, 91, 2974-2984.	2.9	2
24	Compound Evolutionary History of the Rhesus Macaque Mhc Class I B Region Revealed by Microsatellite Analysis and Localization of Retroviral Sequences. PLoS ONE, 2009, 4, e4287.	2.5	10
25	Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis). Immunogenetics, 2009, 61, 745-753.	2.4	23
26	The chimpanzee Mhc-DRB region revisited: Gene content, polymorphism, pseudogenes, and transcripts. Molecular Immunology, 2009, 47, 381-389.	2.2	20
27	A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin. Immunogenetics, 2008, 60, 507-514.	2.4	47
28	Pinpointing a selective sweep to the chimpanzee MHC class I region by comparative genomics. Molecular Ecology, 2008, 17, 2074-2088.	3.9	44
29	Genomic plasticity of the immune-related Mhc class I B region in macaque species. BMC Genomics, 2008, 9, 514.	2.8	20
30	MHC class I A region diversity and polymorphism in macaque species. Immunogenetics, 2007, 59, 367-375.	2.4	98
31	Extensive sharing of MHC class II alleles between rhesus and cynomolgus macaques. Immunogenetics, 2006, 58, 259-268.	2.4	64
32	Reactivation by exon shuffling of a conserved < i>HLA-DR3 < /i> -like pseudogene segment in a New World primate species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5864-5868.	7.1	42
33	Microsatellite typing of the rhesus macaque MHC region. Immunogenetics, 2005, 57, 198-209.	2.4	92
34	Unparalleled complexity of the MHC class I region in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1626-1631.	7.1	204
35	Reduced MIC Gene Repertoire Variation in West African Chimpanzees as Compared to Humans. Molecular Biology and Evolution, 2005, 22, 1375-1385.	8.9	34
36	Genetic Makeup of the <i>DR </i> Region in Rhesus Macaques: Gene Content, Transcripts, and Pseudogenes. Journal of Immunology, 2004, 172, 6152-6157.	0.8	49

#	Article	IF	CITATIONS
37	Evolutionary stability of MHC classÂII haplotypes in diverse rhesus macaque populations. Immunogenetics, 2003, 55, 540-551.	2.4	70
38	Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11748-11753.	7.1	143
39	Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics, 2002, 54, 230-239.	2.4	69
40	Differential evolutionary MHC class II strategies in humans and rhesus macaques: relevance for biomedical studies. Immunological Reviews, 2001, 183, 76-85.	6.0	62
41	Unprecedented Polymorphism of Mhc-DRB Region Configurations in Rhesus Macaques. Journal of Immunology, 2000, 164, 3193-3199.	0.8	77
42	<i>Mamu-I</i> : A Novel Primate MHC Class I <i>B</i> -Related Locus with Unusually Low Variability. Journal of Immunology, 2000, 164, 1386-1398.	0.8	63
43	Major histocompatibility complex class II polymorphisms in primates. Immunological Reviews, 1999, 167, 339-350.	6.0	169
44	Characterization and distribution of Mhc-DPB1 alleles in chimpanzee and rhesus macaque populations. Human Immunology, 1998, 59, 656-664.	2.4	26
45	Evolution of Major Histocompatibility Complex Polymorphisms and T-Cell Receptor Diversity in Primates. Immunological Reviews, 1995, 143, 33-62.	6.0	133
46	Evolution of the major histocompatibility complex DPA1 locus in primates. Human Immunology, 1995, 42, 184-187.	2.4	22
47	Characterization of the rhesus macaque (Macaca mulatta) equivalent of HLA-F. Immunogenetics, 1993, 38, 141-5.	2.4	50
48	Major Histocompatibility Complex class II <i>DQ</i> diversity in Rhesus macaques. Tissue Antigens, 1993, 41, 178-185.	1.0	11
49	Major hstocompatibility haplotypes in a breeding colony of chimpanzees (<i>Pan troglodytes</i>). Tissue Antigens, 1993, 42, 55-61.	1.0	34