
Maurizio D'Antonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7486200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment with IFB-088 Improves Neuropathy in CMT1A and CMT1B Mice. Molecular Neurobiology, 2022, 59, 4159-4178.	4.0	14
2	Calcineurin Activity Is Increased in Charcot-Marie-Tooth 1B Demyelinating Neuropathy. Journal of Neuroscience, 2021, 41, 4536-4548.	3.6	3
3	Nerve pathology in animal models of neuropathies. Journal of the Peripheral Nervous System, 2021, 26 Suppl 2, S61-S68.	3.1	0
4	Phosphorylation of eIF2α Promotes Schwann Cell Differentiation and Myelination in CMT1B Mice with Activated UPR. Journal of Neuroscience, 2020, 40, 8174-8187.	3.6	14
5	Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells, 2020, 9, 325.	4.1	21
6	Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice. PLoS Genetics, 2019, 15, e1008069.	3.5	18
7	Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Human Molecular Genetics, 2019, 28, 1260-1273.	2.9	28
8	Enhanced axonal neuregulin-1 type-III signaling ameliorates neurophysiology and hypomyelination in a Charcot–Marie–Tooth type 1B mouse model. Human Molecular Genetics, 2019, 28, 992-1006.	2.9	24
9	Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot–Marie–Tooth 1B Mouse Model. Journal of Neuroscience, 2018, 38, 4275-4287.	3.6	25
10	Myelin protein zero mutations and the unfolded protein response in Charcot Marie Tooth disease type 1B. Annals of Clinical and Translational Neurology, 2018, 5, 445-455.	3.7	39
11	Neuroactive steroids and diabetic complications in the nervous system. Frontiers in Neuroendocrinology, 2018, 48, 58-69.	5.2	29
12	Zika Virus Replication in Dorsal Root Ganglia Explants from Interferon Receptor1 Knockout Mice Causes Myelin Degeneration. Scientific Reports, 2018, 8, 10166.	3.3	20
13	Electron Microscopy for the Analysis of Peripheral Nerve Myelin. Methods in Molecular Biology, 2018, 1791, 3-13.	0.9	7
14	Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development (Cambridge), 2017, 144, 3114-3125.	2.5	75
15	Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Journal of Cell Science, 2017, 130, e1.2-e1.2.	2.0	2
16	Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis. Scientific Reports, 2016, 6, 39297.	3.3	24
17	<i>Perk</i> Ablation Ameliorates Myelination in S63del-Charcot–Marie–Tooth 1B Neuropathy. ASN Neuro, 2016, 8, 175909141664235.	2.7	18
18	Ablation of <i>Perk</i> in Schwann Cells Improves Myelination in the S63del Charcot-Marie-Tooth 1B Mouse. Journal of Neuroscience, 2016, 36, 11350-11361.	3.6	24

MAURIZIO D'ANTONIO

#	Article	IF	CITATIONS
19	Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders. Frontiers in Molecular Neuroscience, 2016, 9, 162.	2.9	54
20	The lipogenic regulator Sterol Regulatory Element Binding Factor-1c is required to maintain peripheral nerve structure and function. SpringerPlus, 2015, 4, L45.	1.2	0
21	HDAC1/2-Dependent PO Expression Maintains Paranodal and Nodal Integrity Independently of Myelin Stability through Interactions with Neurofascins. PLoS Biology, 2015, 13, e1002258.	5.6	33
22	Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science, 2015, 348, 239-242.	12.6	358
23	Lack of Sterol Regulatory Element Binding Factor-1c Imposes Glial Fatty Acid Utilization Leading to Peripheral Neuropathy. Cell Metabolism, 2015, 21, 571-583.	16.2	51
24	Loss of Fig4 in both Schwann cells and motor neurons contributes to CMT4J neuropathy. Human Molecular Genetics, 2015, 24, 383-396.	2.9	39
25	Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation. Cell Death and Disease, 2015, 6, e1663-e1663.	6.3	88
26	Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. Journal of Experimental Medicine, 2013, 210, 821-838.	8.5	115
27	Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. Journal of Cell Biology, 2013, 201, i3-i3.	5.2	0
28	POS63del impedes the arrival of wild-type PO glycoprotein to myelin in CMT1B mice. Human Molecular Genetics, 2011, 20, 2081-2090.	2.9	14
29	P0 (Protein Zero) Mutation S34C Underlies Instability of Internodal Myelin in S63C Mice. Journal of Biological Chemistry, 2010, 285, 42001-42012.	3.4	21
30	Myelin under stress. Journal of Neuroscience Research, 2009, 87, 3241-3249.	2.9	39
31	Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nature Neuroscience, 2009, 12, 839-847.	14.8	285
32	Ablation of the UPR-Mediator CHOP Restores MotorÂFunction and Reduces Demyelination inÂCharcot-Marie-Tooth 1B Mice. Neuron, 2008, 57, 393-405.	8.1	245
33	Gene profiling and bioinformatic analysis of Schwann cell embryonic development and myelination. Glia, 2006, 53, 501-515.	4.9	80
34	TGFÂ Type II Receptor Signaling Controls Schwann Cell Death and Proliferation in Developing Nerves. Journal of Neuroscience, 2006, 26, 8417-8427.	3.6	65
35	Different Intracellular Pathomechanisms Produce Diverse <i>Myelin Protein Zero</i> Neuropathies in Transgenic Mice. Journal of Neuroscience, 2006, 26, 2358-2368.	3.6	144
36	Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. Journal of Cell Biology, 2004, 164, 385-394.	5.2	207

3

#	Article	IF	CITATIONS
37	PO Glycoprotein Overexpression Causes Congenital Hypomyelination of Peripheral Nerves. Journal of Cell Biology, 2000, 148, 1021-1034.	5.2	145
38	A novel POglycoprotein transgene activates expression oflacZ in myelin-forming Schwann cells. European Journal of Neuroscience, 1999, 11, 1577-1586.	2.6	57
39	PO-CreTransgenic Mice for Inactivation of Adhesion Molecules in Schwann Cells. Annals of the New York Academy of Sciences, 1999, 883, 116-123.	3.8	179