
Cinzia Fionda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7485626/publications.pdf Version: 2024-02-01

CINZIA FIONDA

#	Article	IF	CITATIONS
1	Impact on NK cell functions of acute versus chronic exposure to extracellular vesicleâ€associated MICA: Dual role in cancer immunosurveillance. Journal of Extracellular Vesicles, 2022, 11, e12176.	12.2	22
2	(Auto)Antibody Responses Shape Memory NK Cell Pool Size and Composition. Biomedicines, 2022, 10, 625.	3.2	0
3	Role of Aiolos and Ikaros in the Antitumor and Immunomodulatory Activity of IMiDs in Multiple Myeloma: Better to Lose Than to Find Them. International Journal of Molecular Sciences, 2021, 22, 1103.	4.1	19
4	Cereblon regulates NK cell cytotoxicity and migration via Rac1 activation. European Journal of Immunology, 2021, 51, 2607-2617.	2.9	5
5	Immunomodulatory effect of NEDD8-activating enzyme inhibition in Multiple Myeloma: upregulation of NKG2D ligands and sensitization to Natural Killer cell recognition. Cell Death and Disease, 2021, 12, 836.	6.3	13
6	The Regulatory Activity of Noncoding RNAs in ILCs. Cells, 2021, 10, 2742.	4.1	5
7	Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers, 2020, 12, 440.	3.7	21
8	Hitting More Birds with a Stone: Impact of TGF-β on ILC Activity in Cancer. Journal of Clinical Medicine, 2020, 9, 143.	2.4	19
9	CD155: A Multi-Functional Molecule in Tumor Progression. International Journal of Molecular Sciences, 2020, 21, 922.	4.1	58
10	Multicentre Harmonisation of a Six-Colour Flow Cytometry Panel for NaÃ ⁻ ve/Memory T Cell Immunomonitoring. Journal of Immunology Research, 2020, 2020, 1-15.	2.2	8
11	Negative regulation of innate lymphoid cell responses in inflammation and cancer. Immunology Letters, 2019, 215, 28-34.	2.5	10
12	Activation of liver X receptor upâ€regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB Journal, 2019, 33, 9489-9504.	0.5	19
13	The POU-Domain Transcription Factor Oct-6/POU3F1 as a Regulator of Cellular Response to Genotoxic Stress. Cancers, 2019, 11, 810.	3.7	8
14	The Ubiquitinâ€proteasome pathway regulates Nectin2/CD112 expression and impairs NK cell recognition and killing. European Journal of Immunology, 2019, 49, 873-883.	2.9	28
15	The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death and Disease, 2019, 10, 324.	6.3	11
16	NK Cell Reconstitution in Paediatric Leukemic Patients after T-Cell-Depleted HLA-Haploidentical Haematopoietic Stem Cell Transplantation Followed by the Reinfusion of iCasp9-Modified Donor T Cells. Journal of Clinical Medicine, 2019, 8, 1904.	2.4	4
17	Drug-Induced Senescent Multiple Myeloma Cells Elicit NK Cell Proliferation by Direct or Exosome-Mediated IL15 <i>Trans</i> -Presentation. Cancer Immunology Research, 2018, 6, 860-869.	3.4	59
18	Impact of bone marrow-derived signals on NK cell development and functional maturation. Cytokine and Growth Factor Reviews, 2018, 42, 13-19.	7.2	14

Cinzia Fionda

#	Article	IF	CITATIONS
19	Key Role of the CD56lowCD16low Natural Killer Cell Subset in the Recognition and Killing of Multiple Myeloma Cells. Cancers, 2018, 10, 473.	3.7	29
20	<scp>JAK</scp> / <scp>STAT</scp> signaling in regulation of innate lymphoid cells: The gods before the guardians. Immunological Reviews, 2018, 286, 148-159.	6.0	51
21	Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treatment Reviews, 2018, 70, 255-264.	7.7	28
22	NKG2D and Its Ligands: "One for All, All for One― Frontiers in Immunology, 2018, 9, 476.	4.8	165
23	MICA-129 Dimorphism and Soluble MICA Are Associated With the Progression of Multiple Myeloma. Frontiers in Immunology, 2018, 9, 926.	4.8	33
24	Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. OncoImmunology, 2017, 6, e1279372.	4.6	100
25	p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells. Oncolmmunology, 2017, 6, e1264564.	4.6	29
26	Reconstitution of multifunctional CD56 ^{low} CD16 ^{low} natural killer cell subset in children with acute leukemia given α/β T cell-depleted HLA-haploidentical haematopoietic stem cell transplantation. Oncolmmunology, 2017, 6, e1342024.	4.6	20
27	Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Scientific Reports, 2017, 7, 10445.	3.3	29
28	Role of Distinct Natural Killer Cell Subsets in Anticancer Response. Frontiers in Immunology, 2017, 8, 293.	4.8	112
29	Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance. Frontiers in Immunology, 2017, 8, 1194.	4.8	100
30	Targeting NKG2D and NKp30 Ligands Shedding to Improve NK Cell-Based Immunotherapy. Critical Reviews in Immunology, 2016, 36, 445-460.	0.5	27
31	Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. Journal of Hematology and Oncology, 2016, 9, 134.	17.0	72
32	Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. Journal of Immunology, 2016, 197, 4066-4078.	0.8	28
33	Immunoregulatory and Effector Activities of Nitric Oxide and Reactive Nitrogen Species in Cancer. Current Medicinal Chemistry, 2016, 23, 2618-2636.	2.4	42
34	NKG2D and DNAM-1 Ligands: Molecular Targets for NK Cell-Mediated Immunotherapeutic Intervention in Multiple Myeloma. BioMed Research International, 2015, 2015, 1-9.	1.9	61
35	Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer, 2015, 15, 17.	2.6	54
36	Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. Journal of Immunology, 2015, 195, 736-748.	0.8	85

Cinzia Fionda

#	Article	IF	CITATIONS
37	Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Science Signaling, 2015, 8, ra108.	3.6	50
38	The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma. Oncotarget, 2015, 6, 23609-23630.	1.8	78
39	The DNA Damage Response: A Common Pathway in the Regulation of NKG2D and DNAM-1 Ligand Expression in Normal, Infected, and Cancer Cells. Frontiers in Immunology, 2014, 4, 508.	4.8	110
40	Reactive Oxygen Species– and DNA Damage Response–Dependent NK Cell Activating Ligand Upregulation Occurs at Transcriptional Levels and Requires the Transcriptional Factor E2F1. Journal of Immunology, 2014, 193, 950-960.	0.8	81
41	Chemotherapy-elicited upregulation of NKG2D and DNAM-1 ligands as a therapeutic target in multiple myeloma. Oncolmmunology, 2013, 2, e26663.	4.6	35
42	Inhibition of Glycogen Synthase Kinase-3 Increases NKG2D Ligand MICA Expression and Sensitivity to NK Cell–Mediated Cytotoxicity in Multiple Myeloma Cells: Role of STAT3. Journal of Immunology, 2013, 190, 6662-6672.	0.8	64
43	<scp>IL</scp> â€15 inhibits <scp>IL</scp> â€7Rα expression by memoryâ€phenotype <scp>CD</scp> 8 ⁺ <scp>T</scp> cells in the bone marrow. European Journal of Immunology, 2012, 42, 1129-1139.	2.9	25
44	Heat Shock Protein-90 Inhibitors Increase MHC Class I-Related Chain A and B Ligand Expression on Multiple Myeloma Cells and Their Ability to Trigger NK Cell Degranulation. Journal of Immunology, 2009, 183, 4385-4394.	0.8	79
45	ATM-ATR–dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood, 2009, 113, 3503-3511.	1.4	384
46	Inhibition of <i>Trail</i> Gene Expression by Cyclopentenonic Prostaglandin 15-Deoxy-Δ ^{12,14} -Prostaglandin J ₂ in T Lymphocytes. Molecular Pharmacology, 2007, 72, 1246-1257.	2.3	13
47	15-Deoxy-Δ12,14-Prostaglandin J2 Negatively Regulates rankl Gene Expression in Activated T Lymphocytes: Role of NF-κB and Early Growth Response Transcription Factors. Journal of Immunology, 2007, 178, 4039-4050.	0.8	14
48	Oxidative stress inhibits IFN-α-induced antiviral gene expression by blocking the JAK–STAT pathway. Journal of Hepatology, 2006, 45, 271-279.	3.7	83
49	Hyperthermia Enhances CD95-Ligand Gene Expression in T Lymphocytes. Journal of Immunology, 2005, 174, 223-232.	0.8	40
50	The Cyclopentenone-Type Prostaglandin 15-Deoxy-Δ12,14-Prostaglandin J2 Inhibits CD95 Ligand Gene Expression in T Lymphocytes: Interference with Promoter Activation Via Peroxisome Proliferator-Activated Receptor-Î ³ -Independent Mechanisms. Journal of Immunology, 2003, 170, 4578-4592.	0.8	28
51	Negative Regulation of CD95 Ligand Gene Expression by Vitamin D3 in T Lymphocytes. Journal of Immunology, 2002, 168, 1154-1166.	0.8	69